Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Lancet ; 403(10423): 305-324, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245250

RESUMO

Although dopamine replacement therapy remains a core component of Parkinson's disease treatment, the onset of motor fluctuations and dyskinetic movements might require a range of medical and surgical approaches from a multidisciplinary team, and important new approaches in the delivery of dopamine replacement are becoming available. The more challenging, wide range of non-motor symptoms can also have a major impact on the quality of life of a patient with Parkinson's disease, and requires careful multidisciplinary management using evidence-based knowledge, as well as appropriately tailored strategies according to the individual patient's needs. Disease-modifying therapies are urgently needed to prevent the development of the most disabling refractory symptoms, including gait and balance difficulties, cognitive impairment and dementia, and speech and swallowing impairments. In the third paper in this Series, we present the latest evidence supporting the optimal treatment of Parkinson's disease, and describe an expert approach to many aspects of treatment choice where an evidence base is insufficient.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Dopamina , Qualidade de Vida/psicologia , Seleção de Pacientes
2.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530646

RESUMO

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Assuntos
Encéfalo , Transtornos da Motilidade Ocular , Receptores de Dopamina D2 , Transcriptoma , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtornos da Motilidade Ocular/genética , Encéfalo/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Rede Nervosa/metabolismo , Idoso , Dopamina/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
3.
Brain ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954651

RESUMO

The ability to initiate volitional action is fundamental to human behaviour. Loss of dopaminergic neurons in Parkinson's disease is associated with impaired action initiation, also termed akinesia. Both dopamine and subthalamic deep brain stimulation (DBS) can alleviate akinesia, but the underlying mechanisms are unknown. An important question is whether dopamine and DBS facilitate de novo build-up of neural dynamics for motor execution or accelerate existing cortical movement initiation signals through shared modulatory circuit effects. Answering these questions can provide the foundation for new closed-loop neurotherapies with adaptive DBS, but the objectification of neural processing delays prior to performance of volitional action remains a significant challenge. To overcome this challenge, we studied readiness potentials and trained brain signal decoders on invasive neurophysiology signals in 25 DBS patients (12 female) with Parkinson's disease during performance of self-initiated movements. Combined sensorimotor cortex electrocorticography (ECoG) and subthalamic local field potential (LFP) recordings were performed OFF therapy (N = 22), ON dopaminergic medication (N = 18) and ON subthalamic deep brain stimulation (N = 8). This allowed us to compare their therapeutic effects on neural latencies between the earliest cortical representation of movement intention as decoded by linear discriminant analysis classifiers and onset of muscle activation recorded with electromyography (EMG). In the hypodopaminergic OFF state, we observed long latencies between motor intention and motor execution for readiness potentials and machine learning classifications. Both, dopamine and DBS significantly shortened these latencies, hinting towards a shared therapeutic mechanism for alleviation of akinesia. To investigate this further, we analysed directional cortico-subthalamic oscillatory communication with multivariate granger causality. Strikingly, we found that both therapies independently shifted cortico-subthalamic oscillatory information flow from antikinetic beta (13-35 Hz) to prokinetic theta (4-10 Hz) rhythms, which was correlated with latencies in motor execution. Our study reveals a shared brain network modulation pattern of dopamine and DBS that may underlie the acceleration of neural dynamics for augmentation of movement initiation in Parkinson's disease. Instead of producing or increasing preparatory brain signals, both therapies modulate oscillatory communication. These insights provide a link between the pathophysiology of akinesia and its' therapeutic alleviation with oscillatory network changes in other non-motor and motor domains, e.g. related to hyperkinesia or effort and reward perception. In the future, our study may inspire the development of clinical brain computer interfaces based on brain signal decoders to provide temporally precise support for action initiation in patients with brain disorders.

4.
Proc Natl Acad Sci U S A ; 119(35): e2205881119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36018837

RESUMO

Deep brain stimulation procedures offer an invaluable opportunity to study disease through intracranial recordings from awake patients. Here, we address the relationship between single-neuron and aggregate-level (local field potential; LFP) activities in the subthalamic nucleus (STN) and thalamic ventral intermediate nucleus (Vim) of patients with Parkinson's disease (n = 19) and essential tremor (n = 16), respectively. Both disorders have been characterized by pathologically elevated LFP oscillations, as well as an increased tendency for neuronal bursting. Our findings suggest that periodic single-neuron bursts encode both pathophysiological beta (13 to 33 Hz; STN) and tremor (4 to 10 Hz; Vim) LFP oscillations, evidenced by strong time-frequency and phase-coupling relationships between the bursting and LFP signals. Spiking activity occurring outside of bursts had no relationship to the LFP. In STN, bursting activity most commonly preceded the LFP oscillation, suggesting that neuronal bursting generated within STN may give rise to an aggregate-level LFP oscillation. In Vim, LFP oscillations most commonly preceded bursting activity, suggesting that neuronal firing may be entrained by periodic afferent inputs. In both STN and Vim, the phase-coupling relationship between LFP and high-frequency oscillation (HFO) signals closely resembled the relationships between the LFP and single-neuron bursting. This suggests that periodic single-neuron bursting is likely representative of a higher spatial and temporal resolution readout of periodic increases in the amplitude of HFOs, which themselves may be a higher resolution readout of aggregate-level LFP oscillations. Overall, our results may reconcile "rate" and "oscillation" models of Parkinson's disease and shed light on the single-neuron basis and origin of pathophysiological oscillations in movement disorders.


Assuntos
Tremor Essencial , Neurônios , Doença de Parkinson , Núcleo Subtalâmico , Ritmo beta , Estimulação Encefálica Profunda , Tremor Essencial/fisiopatologia , Humanos , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia
5.
Proc Natl Acad Sci U S A ; 119(14): e2114985119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357970

RESUMO

Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Torcicolo , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Globo Pálido , Humanos , Tálamo , Torcicolo/terapia , Resultado do Tratamento
6.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214203

RESUMO

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Mutação/genética , Frequência do Gene , Doença de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
7.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894268

RESUMO

Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV). Comparisons across cohorts and walking speed categories revealed slower stride velocities in SCA and ET patients compared to HE, which was paralleled by reduced arm swing range of motion (RoM), peak velocity, and increased CoV of stride length, while no group differences were found for trunk deflections and their variability. Larger arm swing RoM, peak velocity, and stride length were predicted by higher gait velocity in all cohorts. Lower gait velocity predicted higher CoV values of trunk sagittal and horizontal deflections, as well as arm swing and stride length in ET and SCA patients, but not in HE. These findings highlight the role of arm movements in ataxic gait and the impact of gait velocity on variability, which are essential for defining disease manifestation and disease-related changes in longitudinal observations.


Assuntos
Braço , Marcha , Velocidade de Caminhada , Humanos , Masculino , Marcha/fisiologia , Feminino , Idoso , Braço/fisiopatologia , Braço/fisiologia , Velocidade de Caminhada/fisiologia , Pessoa de Meia-Idade , Tronco/fisiopatologia , Tronco/fisiologia , Movimento/fisiologia , Doenças Cerebelares/fisiopatologia , Caminhada/fisiologia , Fenômenos Biomecânicos/fisiologia , Amplitude de Movimento Articular/fisiologia , Tremor Essencial/fisiopatologia
8.
Neuroimage ; 268: 119862, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610682

RESUMO

Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
9.
Ann Neurol ; 91(5): 613-628, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35165921

RESUMO

OBJECTIVE: With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS: Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS: Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2  = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2  = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2  = 0.37, p = 0.002). INTERPRETATION: Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Idoso , Idoso de 80 Anos ou mais , Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tálamo/diagnóstico por imagem
10.
Ann Neurol ; 91(5): 602-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150172

RESUMO

OBJECTIVE: The objective of this study was to obtain individual clinical and neuroimaging data of patients undergoing deep brain stimulation (DBS) for essential tremor (ET) from 5 different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS: We analyzed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (for 12 months) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data were used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS: Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement >50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural connectivity-based cerebellothalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a >50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION: Our multicenter ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of DBS in the future. ANN NEUROL 2022;91:602-612.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Tremor/terapia
11.
Mov Disord ; 38(5): 894-899, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807626

RESUMO

BACKGROUND: Pallidal deep brain stimulation (DBS) effectively alleviates symptoms in dystonia patients, but may induce movement slowness as a side-effect. In Parkinson's disease, hypokinetic symptoms have been associated with increased beta oscillations (13-30 Hz). We hypothesize that this pattern is symptom-specific, thus accompanying DBS-induced slowness in dystonia. METHODS: In 6 dystonia patients, pallidal rest recordings with a sensing-enabled DBS device were performed and tapping speed was assessed using marker-less pose estimation over 5 time points following cessation of DBS. RESULTS: After cessation of pallidal stimulation, movement speed increased over time (P < 0.01). A linear mixed-effects model revealed that pallidal beta activity explained 77% of the variance in movement speed across patients (P = 0.01). CONCLUSIONS: The association between beta oscillations and slowness across disease entities provides further evidence for symptom-specific oscillatory patterns in the motor circuit. Our findings might help DBS therapy improvements, as DBS-devices able to adapt to beta oscillations are already commercially available. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/terapia , Globo Pálido/fisiologia , Distúrbios Distônicos/terapia , Doença de Parkinson/terapia , Resultado do Tratamento
12.
Mov Disord ; 38(12): 2185-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823518

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson's disease (PD). However, clinical programming remains challenging with segmented electrodes. OBJECTIVE: Using novel sensing-enabled neurostimulators, we investigated local field potentials (LFPs) and their modulation by DBS to assess whether electrophysiological biomarkers may facilitate clinical programming in chronically implanted patients. METHODS: Sixteen patients (31 hemispheres) with PD implanted with segmented electrodes in the subthalamic nucleus and a sensing-enabled neurostimulator were included in this study. Recordings were conducted 3 months after DBS surgery following overnight withdrawal of dopaminergic medication. LFPs were acquired while stimulation was turned OFF and during a monopolar review of both directional and ring contacts. Directional beta power and stimulation-induced beta power suppression were computed. Motor performance, as assessed by a pronation-supination task, clinical programming and electrode placement were correlated to directional beta power and stimulation-induced beta power suppression. RESULTS: Better motor performance was associated with stronger beta power suppression at higher stimulation amplitudes. Across directional contacts, differences in directional beta power and the extent of stimulation-induced beta power suppression predicted motor performance. However, within individual hemispheres, beta power suppression was superior to directional beta power in selecting the contact with the best motor performance. Contacts clinically activated for chronic stimulation were associated with stronger beta power suppression than non-activated contacts. CONCLUSIONS: Our results suggest that stimulation-induced ß power suppression is superior to directional ß power in selecting the clinically most effective contact. In sum, electrophysiological biomarkers may guide programming of directional DBS systems in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia , Núcleo Subtalâmico/fisiologia , Biomarcadores
13.
Mov Disord ; 38(4): 692-697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36718788

RESUMO

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiologia
14.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
15.
Mov Disord ; 38(9): 1736-1742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358761

RESUMO

BACKGROUND: Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES: We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS: The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS: Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION: DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Discinesias , Transtornos dos Movimentos , Humanos , Criança , Adolescente , Paralisia Cerebral/terapia , Seguimentos , Estudos Prospectivos , Discinesias/etiologia , Discinesias/terapia , Globo Pálido , Transtornos dos Movimentos/terapia , Resultado do Tratamento
16.
Mov Disord ; 38(2): 212-222, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461899

RESUMO

BACKGROUND: The EARLYSTIM trial demonstrated for Parkinson's disease patients with early motor complications that deep brain stimulation of the subthalamic nucleus (STN-DBS) and best medical treatment (BMT) was superior to BMT alone. OBJECTIVE: This prospective, ancillary study on EARLYSTIM compared changes in blinded speech intelligibility assessment between STN-DBS and BMT over 2 years, and secondary outcomes included non-speech oral movements (maximum phonation time [MPT], oral diadochokinesis), physician- and patient-reported assessments. METHODS: STN-DBS (n = 102) and BMT (n = 99) groups underwent assessments on/off medication at baseline and 24 months (in four conditions: on/off medication, ON/OFF stimulation-for STN-DBS). Words and sentences were randomly presented to blinded listeners, and speech intelligibility rate was measured. Statistical analyses compared changes between the STN-DBS and BMT groups from baseline to 24 months. RESULTS: Over the 2-year period, changes in speech intelligibility and MPT, as well as patient-reported outcomes, were not different between groups, either off or on medication or OFF or ON stimulation, but most outcomes showed a nonsignificant trend toward worsening in both groups. Change in oral diadochokinesis was significantly different between STN-DBS and BMT groups, on medication and OFF STN-DBS, with patients in the STN-DBS group performing slightly worse than patients under BMT only. A signal for clinical worsening with STN-DBS was found for the individual speech item of the Unified Parkinson's Disease Rating Scale, Part III. CONCLUSION: At this early stage of the patients' disease, STN-DBS did not result in a consistent deterioration in blinded speech intelligibility assessment and patient-reported communication, as observed in studies of advanced Parkinson's Disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Estudos Prospectivos , Núcleo Subtalâmico/fisiologia , Movimento , Inteligibilidade da Fala/fisiologia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento
17.
Brain ; 145(7): 2407-2421, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35441231

RESUMO

Freezing of gait is a debilitating symptom in advanced Parkinson's disease and responds heterogeneously to treatments such as deep brain stimulation. Recent studies indicated that cortical dysfunction is involved in the development of freezing, while evidence depicting the specific role of the primary motor cortex in the multi-circuit pathology of freezing is lacking. Since abnormal beta-gamma phase-amplitude coupling recorded from the primary motor cortex in patients with Parkinson's disease indicates parkinsonian state and responses to therapeutic deep brain stimulation, we hypothesized this metric might reveal unique information on understanding and improving therapy for freezing of gait. Here, we directly recorded potentials in the primary motor cortex using subdural electrocorticography and synchronously captured gait freezing using optoelectronic motion-tracking systems in 16 freely-walking patients with Parkinson's disease who received subthalamic nucleus deep brain stimulation surgery. Overall, we recorded 451 timed up-and-go walking trials and quantified 7073 s of stable walking and 3384 s of gait freezing in conditions of on/off-stimulation and with/without dual-tasking. We found that (i) high beta-gamma phase-amplitude coupling in the primary motor cortex was detected in freezing trials (i.e. walking trials that contained freezing), but not non-freezing trials, and the high coupling in freezing trials was not caused by dual-tasking or the lack of movement; (ii) non-freezing episodes within freezing trials also demonstrated abnormally high couplings, which predicted freezing severity; (iii) deep brain stimulation of subthalamic nucleus reduced these abnormal couplings and simultaneously improved freezing; and (iv) in trials that were at similar coupling levels, stimulation trials still demonstrated lower freezing severity than no-stimulation trials. These findings suggest that elevated phase-amplitude coupling in the primary motor cortex indicates higher probabilities of freezing. Therapeutic deep brain stimulation alleviates freezing by both decoupling cortical oscillations and enhancing cortical resistance to abnormal coupling. We formalized these findings to a novel 'bandwidth model,' which specifies the role of cortical dysfunction, cognitive burden and therapeutic stimulation on the emergence of freezing. By targeting key elements in the model, we may develop next-generation deep brain stimulation approaches for freezing of gait.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/efeitos adversos , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Caminhada/fisiologia
18.
Brain ; 145(1): 251-262, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34453827

RESUMO

The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at P < 0.001; R = 0.34 at P = 0.032). Next, we calculated an agreement map, which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on each cohort alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Globo Pálido , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos
19.
Brain ; 145(1): 237-250, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34264308

RESUMO

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Assuntos
Estimulação Encefálica Profunda , Transtornos Motores , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia
20.
Brain ; 145(12): 4385-4397, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35026844

RESUMO

Brain lesions are a rare cause of tic disorders. However, they can provide uniquely causal insights into tic pathophysiology and can also inform on possible neuromodulatory therapeutic targets. Based on a systematic literature review, we identified 22 cases of tics causally attributed to brain lesions and employed 'lesion network mapping' to interrogate whether tic-inducing lesions would be associated with a common network in the average human brain. We probed this using a normative functional connectome acquired in 1000 healthy participants. We then examined the specificity of the identified network by contrasting tic-lesion connectivity maps to those seeding from 717 lesions associated with a wide array of neurological and/or psychiatric symptoms within the Harvard Lesion Repository. Finally, we determined the predictive utility of the tic-inducing lesion network as a therapeutic target for neuromodulation. Specifically, we collected retrospective data of 30 individuals with Tourette disorder, who underwent either thalamic (n = 15; centromedian/ventrooralis internus) or pallidal (n = 15; anterior segment of globus pallidus internus) deep brain stimulation and calculated whether connectivity between deep brain stimulation sites and the lesion network map could predict clinical improvements. Despite spatial heterogeneity, tic-inducing lesions mapped to a common network map, which comprised the insular cortices, cingulate gyrus, striatum, globus pallidus internus, thalami and cerebellum. Connectivity to a region within the anterior striatum (putamen) was specific to tic-inducing lesions when compared with control lesions. Connectivity between deep brain stimulation electrodes and the lesion network map was predictive of tic improvement, regardless of the deep brain stimulation target. Taken together, our results reveal a common brain network involved in tic generation, which shows potential as a therapeutic target for neuromodulation.


Assuntos
Estimulação Encefálica Profunda , Tiques , Síndrome de Tourette , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Resultado do Tratamento , Encéfalo/patologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA