Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(13): 136601, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581352

RESUMO

We propose a phase diagram for Fe(x)Bi2Te3 (0≤x≤0.1) single crystals, which belong to a class of magnetically bulk-doped topological insulators. The evolution of magnetic correlations from ferromagnetic to antiferromagnetic gives rise to topological phase transitions, where the paramagnetic topological insulator of Bi2Te3 turns into a band insulator with ferromagnetic-cluster glassy behavior around x∼0.025, and it further evolves to a topological insulator with valence-bond glassy behavior, which spans over the region from x∼0.03 up to x∼0.1. This phase diagram is verified by measuring magnetization, magnetotransport, and angle-resolved photoemission spectra with theoretical discussions.

2.
J Nanosci Nanotechnol ; 11(3): 2678-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449453

RESUMO

We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Modelos Químicos , Pontos Quânticos , Semicondutores , Simulação por Computador , Transferência de Energia , Magnetismo
3.
Sci Rep ; 5: 17158, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26596472

RESUMO

The anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gate-control of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA