RESUMO
Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.
Assuntos
Fósseis , Filogenia , Animais , Aranhas/classificação , Aranhas/genéticaRESUMO
The systematics of the arachnid order Solifugae have been an enigma, owing to challenges in interpreting morphology, a paucity of molecular phylogenetic studies sampling across the group, and a dearth of taxonomic attention for many lineages. Recent work has suggested that solifuge families largely exhibit contiguous distributions and reflect patterns of vicariance, with the exception of three families: Melanoblossidae, Daesiidae and Gylippidae. Morphological studies have cast doubt on their existing circumscriptions and the present composition of these taxa renders their distributions as disjunct. We leveraged ultraconserved elements (UCEs) to test the phylogenetic placement of three key lineages of Solifugae that cause these anomalous distributions: Dinorhax rostrumpsittaci (putative melanoblossid), Namibesia (putative daesiid), and Trichotoma (putative gylippid). Phylogenetic placement of these three genera based on UCEs rendered the families that harbor them as para- or polyphyletic, recovering instead relationships that better accord with a biogeographic history driven by vicariance. Toward a stable and phylogenetically informed classification of Solifugae, we establish three new families, Dinorhaxidae new rank, Namibesiidae new rank and Lipophagidae new rank.
Assuntos
Aracnídeos , Aranhas , Animais , Filogenia , Camelus , Aranhas/genéticaRESUMO
High throughput sequencing and phylogenomic analyses focusing on relationships among spiders have both reinforced and upturned long-standing hypotheses. Likewise, the evolution of spider webs-perhaps their most emblematic attribute-is being understood in new ways. With a matrix including 272 spider species and close arachnid relatives, we analyze and evaluate the relationships among these lineages using a variety of orthology assessment methods, occupancy thresholds, tree inference methods and support metrics. Our analyses include families not previously sampled in transcriptomic analyses, such as Symphytognathidae, the only araneoid family absent in such prior works. We find support for the major established spider lineages, including Mygalomorphae, Araneomorphae, Synspermiata, Palpimanoidea, Araneoidea and the Retrolateral Tibial Apophysis Clade, as well as the uloborids, deinopids, oecobiids and hersiliids Grade. Resulting trees are evaluated using bootstrapping, Shimodaira-Hasegawa approximate likelihood ratio test, local posterior probabilities and concordance factors. Using structured Markov models to assess the evolution of spider webs while accounting for hierarchically nested traits, we find multiple convergent occurrences of the orb web across the spider tree-of-life. Overall, we provide the most comprehensive spider tree-of-life to date using transcriptomic data and use new methods to explore controversial issues of web evolution, including the origins and multiple losses of the orb web.
Assuntos
Evolução Biológica , Proteínas de Insetos/genética , Filogenia , Comportamento Predatório/fisiologia , Aranhas/classificação , Transcriptoma , Animais , Aranhas/genética , Aranhas/fisiologiaRESUMO
Advanced sequencing technologies have expedited resolution of higher-level arthropod relationships. Yet, dark branches persist, principally among groups occurring in cryptic habitats. Among chelicerates, Solifugae ("camel spiders") is the last order lacking a higher-level phylogeny and have thus been historically characterized as "neglected [arachnid] cousins". Though renowned for aggression, remarkable running speed, and xeric adaptation, inferring solifuge relationships has been hindered by inaccessibility of diagnostic morphological characters, whereas molecular investigations have been limited to one of 12 recognized families. Our phylogenomic dataset via capture of ultraconserved elements sampling all extant families recovered a well-resolved phylogeny, with two distinct groups of New World taxa nested within a broader Paleotropical radiation. Divergence times using fossil calibrations inferred that Solifugae radiated by the Permian, and most families diverged prior to the Paleogene-Cretaceous extinction, likely driven by continental breakup. We establish Boreosolifugae new suborder uniting five Laurasian families, and Australosolifugae new suborder uniting seven Gondwanan families using morphological and biogeographic signal.