RESUMO
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks had focused only on the nodal events. If random walks are used to model the transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.
RESUMO
Music has a complex structure that expresses emotion and conveys information. Humans process that information through imperfect cognitive instruments that produce a gestalt, smeared version of reality. How can we quantify the information contained in a piece of music? Further, what is the information inferred by a human, and how does that relate to (and differ from) the true structure of a piece? To tackle these questions quantitatively, we present a framework to study the information conveyed in a musical piece by constructing and analyzing networks formed by notes (nodes) and their transitions (edges). Using this framework, we analyze music composed by J. S. Bach through the lens of network science and information theory. Regarded as one of the greatest composers in the Western music tradition, Bach's work is highly mathematically structured and spans a wide range of compositional forms, such as fugues and choral pieces. Conceptualizing each composition as a network of note transitions, we quantify the information contained in each piece and find that different kinds of compositions can be grouped together according to their information content and network structure. Moreover, we find that the music networks communicate large amounts of information while maintaining small deviations of the inferred network from the true network, suggesting that they are structured for efficient communication of information. We probe the network structures that enable this rapid and efficient communication of information--namely, high heterogeneity and strong clustering. Taken together, our findings shed new light on the information and network properties of Bach's compositions. More generally, our framework serves as a stepping stone for exploring musical complexities, creativity and the structure of information in a range of complex systems.