Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 107: 104403, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195068

RESUMO

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.


Assuntos
Modelos Teóricos , Mutagênicos/toxicidade , Projetos de Pesquisa , Toxicologia/métodos , Animais , Simulação por Computador , Humanos , Testes de Mutagenicidade , Medição de Risco
2.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678766

RESUMO

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Assuntos
Simulação por Computador , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-24598040

RESUMO

Regulatory agencies worldwide are committed to the objectives of the Strategic Approach to International Chemicals Management to ensure that by 2020 chemicals are used and produced in ways that lead to the minimization of significant adverse effects on human health and the environment. Under the Government of Canada's Chemicals Management Plan, the commitment to address a large number of substances, many with limited data, has highlighted the importance of pursuing alternative hazard assessment methodologies that are able to accommodate chemicals with varying toxicological information. One such method is (Quantitative) Structure Activity Relationships ((Q)SAR) models. The current investigation into the predictivity of 20 (Q)SAR tools designed to model bacterial reverse mutation in Salmonella typhimurium is one of the first of this magnitude to be carried out using an external validation set comprised mainly of industrial chemicals which represent a diverse group of aromatic and benzidine-based azo dyes and pigments. Overall, this study highlights the value in challenging the predictivity of existing models using a small but representative subset of data-rich chemicals. Furthermore, external validation revealed that only a handful of models satisfactorily predicted for the test chemical space. The exercise also provides insight into using the Organisation for Economic Co-operation and Development (Q)SAR Toolbox as a read across tool.


Assuntos
Compostos Azo/toxicidade , Benzidinas/toxicidade , Relação Quantitativa Estrutura-Atividade , Testes de Mutagenicidade , Salmonella typhimurium
4.
ALTEX ; 39(1): 123-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818430

RESUMO

Internationally, there are thousands of existing and newly introduced chemicals in commerce, highlighting the ongoing importance of innovative approaches to identify emerging chemicals of concern. For many chemicals, there is a paucity of hazard and exposure data. Thus, there is a crucial need for efficient and robust approaches to address data gaps and support risk-based prioritization. Several studies have demonstrated the utility of in vitro bioactivity data from the ToxCast program in deriving points of departure (PODs). ToxCast contains data for nearly 1,400 endpoints per chemical, and the bioactivity concentrations, indicative of potential adverse outcomes, can be converted to human-equivalent PODs using high-throughput toxicokinetics (HTTK) modeling. However, data gaps need to be addressed for broader application: the limited chemical space of HTTK and quantitative high-throughput screening data. Here we explore the applicability of in silico models to address these data needs. Specifically, we used ADMET predictor for HTTK predictions and a generalized read-across approach to predict ToxCast bioactivity potency. We applied these models to profile 5,801 chemicals on Canada's Domestic Substances List (DSL). To evaluate the approach's performance, bioactivity PODs were compared with in vivo results from the EPA Toxicity Values database for 1,042 DSL chemicals. Comparisons demonstrated that the bioac­tivity PODs, based on ToxCast data or read-across, were conservative for 95% of the chemicals. Comparing bioactivity PODs to human exposure estimates supports the identification of chemicals of potential interest for further work. The bioac­tivity workflow shows promise as a powerful screening tool to support effective triaging of chemical inventories.


Assuntos
Ensaios de Triagem em Larga Escala , Bases de Dados Factuais , Humanos , Medição de Risco , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA