Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207000

RESUMO

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian's algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.

2.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770738

RESUMO

This research work aims to scrutinize the mathematical model for the hybrid nanofluid flow in a converging and diverging channel. Titanium dioxide and silver TiO2 and Ag are considered as solid nanoparticles while blood is considered a base solvent. The couple-stress fluid model is essentially use to describe the blood flow. Therefore, the couple-stress term was used in the recent study with the existence of a magnetic field and a Darcy-Forchheiner porous medium. The heat absorption/omission and radiation terms were also included in the energy equation for the sustainability of drug delivery. An endeavor was made to link the recent study with the applications of drug delivery. It has already been revealed by the available literature that the combination of TiO2 with any other metal can destroy cancer cells more effectively than TiO2 separately. Both the walls are stretchable/shrinkable, whereas flow is caused by a source or sink with α as a converging/diverging parameter. Governing equations were altered into the system of non-linear coupled equations by using the similarity variables. The homotopy analysis method (HAM) was applied to obtain the preferred solution. The influences of the modeled parameters have been calculated and displayed. The confrontation of wall shear stress and hybrid nanofluid flow increased as the couple stress parameter rose, which indicates an improvement in the stability of the base fluid (blood). The percentage (%) increase in the heat transfer rate with the variation of nanoparticle volume fraction was also calculated numerically and discussed theoretically.


Assuntos
Sistemas de Liberação de Medicamentos , Hemodinâmica , Hidrodinâmica , Modelos Teóricos , Nanopartículas , Nanotecnologia/métodos , Algoritmos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Prata , Estresse Mecânico
3.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806939

RESUMO

Human immunodeficiency virus (HIV) is a life life-threatening and serious infection caused by a virus that attacks CD4+ T-cells, which fight against infections and make a person susceptible to other diseases. It is a global public health problem with no cure; therefore, it is highly important to study and understand the intricate phenomena of HIV. In this article, we focus on the numerical study of the path-tracking damped oscillatory behavior of a model for the HIV infection of CD4+ T-cells. We formulate fractional dynamics of HIV with a source term for the supply of new CD4+ T-cells depending on the viral load via the Caputo-Fabrizio derivative. In the formulation of fractional HIV dynamics, we replaced the constant source term for the supply of new CD4+ T-cells from the thymus with a variable source term depending on the concentration of the viral load, and introduced a term that describes the incidence of the HIV infection of CD4+ T-cells. We present a novel numerical scheme for fractional view analysis of the proposed model to highlight the solution pathway of HIV. We inspect the periodic and chaotic behavior of HIV for the given values of input factors using numerical simulations.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Modelos Imunológicos , Carga Viral , Replicação Viral/fisiologia , Humanos
4.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075150

RESUMO

In this research article, we investigated a comprehensive analysis of time-dependent free convection electrically and thermally conducted water-based nanofluid flow containing Copper and Titanium oxide (Cu and TiO 2 ) past a moving porous vertical plate. A uniform transverse magnetic field is imposed perpendicular to the flow direction. Thermal radiation and heat sink terms are included in the energy equation. The governing equations of this flow consist of partial differential equations along with some initial and boundary conditions. The solution method of these flow interpreting equations comprised of two parts. Firstly, principal equations of flow are symmetrically transformed to a set of nonlinear coupled dimensionless partial differential equations using convenient dimensionless parameters. Secondly, the Laplace transformation technique is applied to those non-dimensional equations to get the close form exact solutions. The control of momentum and heat profile with respect to different associated parameters is analyzed thoroughly with the help of graphs. Fluid accelerates with increasing Grashof number (Gr) and porosity parameter (K), while increasing values of heat sink parameter (Q) and Prandtl number (Pr) drop the thermal profile. Moreover, velocity and thermal profile comparison for Cu and TiO 2 -based nanofluids is graphed.


Assuntos
Convecção , Hidrodinâmica , Nanoestruturas/química , Água/química , Temperatura Alta , Campos Magnéticos , Modelos Teóricos , Porosidade , Temperatura
5.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046124

RESUMO

This paper examines the time independent and incompressible flow of magnetohydrodynamic (MHD) nanofluid through a porous rotating disc with velocity slip conditions. The mass and heat transmission with viscous dissipation is scrutinized. The proposed partial differential equations (PDEs) are converted to ordinary differential equation (ODEs) by mean of similarity variables. Analytical and numerical approaches are applied to examine the modeled problem and compared each other, which verify the validation of both approaches. The variation in the nanofluid flow due to physical parameters is revealed through graphs. It is witnessed that the fluid velocities decrease with the escalation in magnetic, velocity slip, and porosity parameters. The fluid temperature escalates with heightening in the Prandtl number, while other parameters have opposite impacts. The fluid concentration augments with the intensification in the thermophoresis parameter. The validity of the proposed model is presented through Tables.


Assuntos
Hidrodinâmica , Movimento (Física) , Nanotecnologia/métodos , Temperatura Alta , Modelos Teóricos , Porosidade , Temperatura , Viscosidade
6.
Entropy (Basel) ; 22(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33286175

RESUMO

This article analyzes heat transfer enhancement in incompressible time dependent magnetohydrodynamic (MHD) convective flow of Oldroyd-B nanofluid with carbon nanotubes (CNTs). Single wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are immersed in a base fluid named Sodium alginate. The flow is restricted to an infinite vertical plate saturated in a porous material incorporating the generalized Darcy's law and heat suction/injection. The governing equations for momentum, shear stress and energy are modelled in the form of partial differential equations along with ramped wall temperature and ramped wall velocity boundary conditions. Laplace transformation is applied to convert principal partial differential equations to ordinary differential equations first and, later, complex multivalued functions of Laplace parameter are handled with numerical inversion to obtain the solutions in real time domain. Expression for Nusselt number is also obtained to clearly examine the difference in rate of heat transfer. A comparison for isothermal wall condition and ramped wall condition is also made to analyze the difference in both profiles. A graphical study is conducted to analyze how the fluid profiles are significantly affected by several pertinent parameters. Rate of heat transfer increases with increasing volume fraction of nanoparticle while shear stress reduces with elevation in retardation time. Moreover, flow gets accelerated with increase in Grashof number and Porosity parameter. For every parameter, a comparison between solutions of SWCNTs and MWCNTs is also presented.

7.
Entropy (Basel) ; 22(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33286339

RESUMO

The object of this study was to demonstrate the ability of machine learning (ML) methods for the segmentation and classification of diabetic retinopathy (DR). Two-dimensional (2D) retinal fundus (RF) images were used. The datasets of DR-that is, the mild, moderate, non-proliferative, proliferative, and normal human eye ones-were acquired from 500 patients at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan. Five hundred RF datasets (sized 256 × 256) for each DR stage and a total of 2500 (500 × 5) datasets of the five DR stages were acquired. This research introduces the novel clustering-based automated region growing framework. For texture analysis, four types of features-histogram (H), wavelet (W), co-occurrence matrix (COM) and run-length matrix (RLM)-were extracted, and various ML classifiers were employed, achieving 77.67%, 80%, 89.87%, and 96.33% classification accuracies, respectively. To improve classification accuracy, a fused hybrid-feature dataset was generated by applying the data fusion approach. From each image, 245 pieces of hybrid feature data (H, W, COM, and RLM) were observed, while 13 optimized features were selected after applying four different feature selection techniques, namely Fisher, correlation-based feature selection, mutual information, and probability of error plus average correlation. Five ML classifiers named sequential minimal optimization (SMO), logistic (Lg), multi-layer perceptron (MLP), logistic model tree (LMT), and simple logistic (SLg) were deployed on selected optimized features (using 10-fold cross-validation), and they showed considerably high classification accuracies of 98.53%, 99%, 99.66%, 99.73%, and 99.73%, respectively.

8.
Entropy (Basel) ; 21(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267049

RESUMO

In the present article, we related the analytical solution of the fractional-order dispersive partial differential equations, using the Laplace-Adomian decomposition method. The Caputo operator is used to define the derivative of fractional-order. Laplace-Adomian decomposition method solutions for both fractional and integer orders are obtained in series form, showing higher convergence of the proposed method. Illustrative examples are considered to confirm the validity of the present method. The fractional order solutions that are convergent to integer order solutions are also investigated.

9.
Entropy (Basel) ; 21(6)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33267271

RESUMO

In the present article, fractional-order diffusion equations are solved using the Natural transform decomposition method. The series form solutions are obtained for fractional-order diffusion equations using the proposed method. Some numerical examples are presented to understand the procedure of the Natural transform decomposition method. The Natural transform decomposition method has shown the least volume of calculations and a high rate of convergence compared to other analytical techniques, the proposed method can also be easily applied to other non-linear problems. Therefore, the Natural transform decomposition method is considered to be one of the best analytical technique, to solve fractional-order linear and non-linear partial deferential equations, particularly fractional-order diffusion equation.

10.
Entropy (Basel) ; 21(6)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33267311

RESUMO

In the present article, fractional-order heat and wave equations are solved by using the natural transform decomposition method. The series form solutions are obtained for fractional-order heat and wave equations, using the proposed method. Some numerical examples are presented to understand the procedure of natural transform decomposition method. The natural transform decomposition method procedure has shown that less volume of calculations and a high rate of convergence can be easily applied to other nonlinear problems. Therefore, the natural transform decomposition method is considered to be one of the best analytical techniques, in order to solve fractional-order linear and nonlinear Partial deferential equations, particularly fractional-order heat and wave equation.

11.
Entropy (Basel) ; 21(5)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33267206

RESUMO

The impact of nonlinear thermal radiations rotating with the augmentation of heat transfer flow of time-dependent single-walled carbon nanotubes is investigated. Nanofluid flow is induced by a shrinking sheet within the rotating system. The impact of viscous dissipation is taken into account. Nanofluid flow is assumed to be electrically conducting. Similarity transformations are applied to transform PDEs (partial differential equations) into ODEs (ordinary differential equations). Transformed equations are solved by the homotopy analysis method (HAM). The radiative source term is involved in the energy equation. For entropy generation, the second law of thermodynamics is applied. The Bejan number represents the current investigation of non-dimensional entropy generation due to heat transfer and fluid friction. The results obtained indicate that the thickness of the boundary layer decreases for greater values of the rotation parameter. Moreover, the unsteadiness parameter decreases the temperature profile and increases the velocity field. Skin friction and the Nusselt number are also physically and numerically analyzed.

12.
Entropy (Basel) ; 21(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33267461

RESUMO

In this research article, the investigation of the three-dimensional Casson nanofluid flow in two rotating parallel plates has been presented. The nanofluid has been considered in steady state. The rotating plates have been considered porous. The heat equation is considered to study the magnetic field, joule heating, and viscous dissipation impacts. The nonlinear ordinary system of equations has been solved analytically and numerically. For skin friction and Nusslt number, numerical results are tabulated. It is found that velocity declines for higher values of magnetic and porosity parameter while it is heightened through squeezing parameter. Temperature is an enhancing function for Eckert number and nanoparticles volume fraction. Entropy generation is augmented with radiation parameter, Prandtl, and Eckert numbers. The Casson, porosity, magnetic field, and rotation parameters were reduced while the squeezing and suction parameters increased the velocity profile along x-direction. The porosity parameter increased the Bejan number while the Eckert and Prandtl numbers decreased the Bejan number. Skin friction was enhanced with increasing the Casson, porosity, and magnetic parameters while it decreased with enhancing rotation and squeezing parameters. All these impacts have been shown via graphs. The influences by fluid flow parameters over skin friction and Nusselt number are accessible through tables.

13.
Entropy (Basel) ; 21(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33267514

RESUMO

In this research work, a 3D rotating flow of carbon nanotubes (CNTs) over a porous stretchable sheet for heat and mass transfer is investigated. Kerosene oil is considered as a base liquid and two types of CNTs, (Single & Multi) WCNTs are added as the additives to the base liquid. The present analysis further comprises the combined effect of the Hall, ion-slip, and thermal radiation, along with heat generation/absorption. The appropriate ordinary differential system of equations after applying appropriate transformation is calculated. The resulting nonlinear system of equations (conservation of mass, momentum, temperature) is explained by HAM (Homotopy Analysis Method). Solution of velocities and thermal fields are obtained and discussed graphically. Expression of C f and N u are intended for both type of nanoliquids. The influences of prominent physical factors are plotted for velocities and thermal profiles using Methematica. These graphical results are qualitatively in excellent agreement with the previous published results. Also, single wall nanoparticles are found to have higher temperatures than multi wall CNTs nanoparticles.

14.
PLoS One ; 19(5): e0302441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748710

RESUMO

Several conjugate gradient (CG) parameters resulted in promising methods for optimization problems. However, it turns out that some of these parameters, for example, 'PRP,' 'HS,' and 'DL,' do not guarantee sufficient descent of the search direction. In this work, we introduce new spectral-like CG methods that achieve sufficient descent property independently of any line search (LSE) and for arbitrary nonnegative CG parameters. We establish the global convergence of these methods for four different parameters using Wolfe LSE. Our algorithm achieves this without regular restart and assumption of convexity regarding the objective functions. The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. We conduct computational experiments to showcase the implementation and effectiveness of the proposed methods. The proposed spectral-like methods, namely nonnegative SPRP, SHZ, SDL, and SHS, exhibit superior performance based on their arrangement, outperforming HZ and SP methods in terms of the number of iterations, function evaluations, and gradient evaluations.


Assuntos
Algoritmos , Simulação por Computador
15.
ScientificWorldJournal ; 2013: 205275, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766681

RESUMO

We established some theorems under the aim of deriving variants of the Banach contraction principle, using the classes of inner contractions and outer contractions, on the structure of fuzzy modular spaces.


Assuntos
Algoritmos , Lógica Fuzzy , Modelos Teóricos , Simulação por Computador
16.
Heliyon ; 9(7): e17642, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483816

RESUMO

The present article aims to extend some of the already existing fluid models to a large class of fluids namely, "Oldroyd-B couple stress fluid (OBCSF)". The main focus of the present work is to combine the existing fluid models in ordered to get a new class of fluid. The unsteady magnetohydrodynamics (MHD) Oldroyd-B fluid (OBF) with couple stresses, porosity, heat and mass transfer is considered in the present analysis. The Oldroyd-B couple stress fluid is assumed to flow in channel. The classical model is fractionalized by considering Atangana-Baleanu (AB) operator in ordered to highlight the memory analysis. To develop closed form solutions the combined (Laplace + Fourier) integrals have been used. The results obtained are portrayed through graphs for all pertinent flow parameters which involved in the present dynamic model. Moreover, the impact of AB time fractional parameter is investigated graphically on flow, temperature and concentration distributions exploiting MATHCAD software. Secondly, for better understanding the present solutions of Oldroyd-B couple stress fluid (OBCSF) are reduced to Odroyd-B fluid (OBF) without couple stresses, Maxwell solutions, Couple stress solutions and Newtonian viscous fluid solutions and the results have been compared for classical and fractional order derivatives. In addition to this a limiting case is carried out by our solutions to already published work which verify our solutions. In addition to this during the analysis we noticed that the flow heat and concentrated get lowered for the escalating numerical values of AB fractional derivatives. Similarly, it is also noticed that the velocity in channel accelerated with the increment of numeric values of pressure, porosity, thermal buoyancy and relaxation time parameter. In the same manner temperature and concertation profiles gets low with the higher values of Prandtl number, Reynold number and fractional operator. Finally, skin friction for momentum equation, Nusselt number for temperature and Sherwood number for concentration have been calculated and given in tabular forms.

17.
Sci Rep ; 13(1): 13802, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612292

RESUMO

Engine Oil is a widely used fluid in engineering problems, particularly to enhance the rate of heat transfer when these working fluids play a fundamental role. We consider engine oil as a base fluid and the suspension of different shaped (Spherical cylindrical and platelet) nanoparticles dispersed uniformly in the base fluid to enhance the working capability of engine oil. The spherical shape [Formula: see text], platelet shape [Formula: see text] and cylindrical shape [Formula: see text] nanoparticles are added in engine oil to constitute tri-hybrid nanofluid aiming at obtaining better thermal performance. Furthermore, we also analyze the Jeffery tri-hybrid nanofluid in a rotating frame over an infinite vertical plate. More precisely, the classical model of Jeffery tri-hybrid nanofluid is transformed into a time-fractional model by applying the newly developed constant proportional Caputo fractional derivatives. Sharp numerical results are obtained applying a Laplace transform steered approach. All the flow parameters are highlighted through graphs via MATHCAD. Furthermore, a comparative analysis between nanofluid, hybrid nanofluid and tri-hybrid nanofluid has been performed showing that tri-hybrid nanofluid has good thermal performance. The solutions of the constant proportional operator are discussed classically by taking fractional parameter α → 1. Moreover, some engineering quantities have been calculated and presented in tables. During the analysis we dispersing the mixture of nanoparticles in engine oil base fluid enhanced the heat transfer up-to18.72% which can efficiently improve the lubricity of the engine oil.

18.
Sci Rep ; 13(1): 4596, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944650

RESUMO

During last decades the research of nanofluid is of great interest all over the World, particularly because of its thermal applications in engineering, and biological sciences. Although nanofluid performance is well appreciate and showed good results in the heat transport phenomena, to further improve conventional base fluids thermal performance an increasing number of researchers have started considering structured nanoparticles suspension in one base fluid. As to make an example, when considering the suspension of three different nanoparticles in a single base fluid we have the so called "ternary hybrid nanofluid". In the present study three different shaped nanoparticles are uniformly dispersed in blood. In particular, the three different shaped nanoparticles are spherical shaped ferric oxide [Formula: see text], platelet shaped zinc [Formula: see text], and cylindrical shaped gold [Formula: see text], which are considered in blood base fluid because of related advance pharmaceutical applications. Accordingly, we focused our attention on the sharp evaluation of heat transfer for the unsteady couple stress Casson tri-hybrid nanofluid flow in channel. In particular, we formulated the problem via momentum and energy equations in terms of partial differential equations equipped with realistic physical initial and boundary conditions. Moreover, we transformed classical model into their fractional counterparts by applying the Atangana-Baleanu time-fractional operator. Solutions to velocity and temperature equations have been obtained by using both the Laplace and the Fourier transforms, while the effect of physical parameters on velocity and temperature profiles, have been graphically analyzed exploiting MATHCAD. In particular, latter study clearly shows that for higher values of volume fraction [Formula: see text] of the nanoparticles the fluid velocity declines, while the temperature rises for the higher values of volume fraction [Formula: see text] of the nanoparticles. Using blood-based ternary hybrid nanofluid enhances the rate of heat transfer up-to 8.05%, spherical shaped [Formula: see text] enhances up-to 4.63%, platelet shaped [Formula: see text] nanoparticles enhances up-to 8.984% and cylindrical shaped gold [Formula: see text] nanoparticles enhances up-to 10.407%.


Assuntos
Temperatura Alta , Nanopartículas , Plaquetas , Engenharia , Ouro
19.
Heliyon ; 9(4): e14770, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151665

RESUMO

Due to the widespread use of magnetohydrodynamic (MHD) in electromagnetic targeted therapy, malignant tumor therapy, magnetic microscopy, regulating blood circulation following operations, and fluid pumping in industrial and technical processes. The main goal of the article investigates the analysis of a dusty Brinkman fluid flowing through fluctuating parallel plates with an inclined relative magnetic field. The study aims to analyze the relative magnetic phenomena which is fixed relative to the fluid (MFFRF) or plate (MFFRP), and its impact on fluid and particle motion. The mathematical modelling of the fluid is established through a conventional partial differential equations, and Buckingham's pi theorem is utilized to obtain dimensionless variables. Poincare-Lighthill perturbation technique (PLPT) is employed to derive the solution, with the aid of the program Mathcad-15, the findings are displayed graphically for both velocities. The study indicates that the relative magnetic field significantly influences fluid and particle motion which can be utilized to control fluid pumping in industrial operations and blood flow during surgery.

20.
Sci Rep ; 13(1): 7810, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37183197

RESUMO

The core devotion of this study is to develop a generalized model by means of a recently proposed fractional technique in order to anticipate the enhancement in the thermal efficiency of engine oil because of the dispersion of graphene and magnesia nanoparticles. In addition to investigating the synergistic attributes of the foregoing particles, this work evaluates shape impacts for column, brick, tetrahedron, blade, and lamina-like shapes. In the primary model, the flow equation is coupled with concentration and energy functions. This classical system is transmuted into a fractional environment by generalizing mathematical expressions of thermal and diffusion fluxes by virtue of the Prabhakar fractional operator. In this study, ramped flow and temperature slip conditions are simultaneously applied for the first time to examine the behavior of a hybrid nanofluid. The mathematical analysis of this problem involves the incorporation of dimension-independent parameters into the model and the execution of the Laplace transform for the consequent equations. By doing so, exact solutions are derived in the form of Mittag-Leffler functions. Multiple illustrations are developed by dint of exact solutions to chew over all aspects of temperature variations and flow dynamics. For the preparation of these illustrations, the details of parametric ranges are as follows: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. The contribution of differently shaped nanoparticles, volume proportions, and fractional parameters in boosting the heat-transferring attributes of engine oil is also anticipated. In this regard, results for Nusselt number are provided in tabular form. Additionally, a brief analysis of shear stress is carried out for fractional parameters and various combinations of magnesia, graphene, and engine oil. This investigation anticipates that engine oil's hybridization with magnesia and graphene would result in a 33% increase in its thermal performance, which evidently improves its industrial significance. The enhancement in Schmidt number yields an improvement in the mass transfer rate. An increment in collective volume fraction leads to raising the profile of the thermal field. However, the velocity indicates a decreasing behavior. Nusselt number reaches its highest value ([Formula: see text]) for the lamina shape of considered particles. When the intensity of the buoyancy force augments, it causes the velocity to increase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA