Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 59(14): 9900-9918, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32640163

RESUMO

High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (α-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA2Te4 compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry.

2.
Inorg Chem ; 54(21): 10250-5, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479903

RESUMO

The crystal structure and the Yb valence of the YbFe2Ge2 heavy fermion compound was measured at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. The measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. While the ThCr2Si2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence from v = 2.72(2) at ambient pressure to v = 2.93(3) at ∼9 GPa, where at low temperature a pressure-induced quantum critical state was reported.

3.
Inorg Chem ; 52(2): 832-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23298404

RESUMO

The pressure-induced valence change of Yb in YbMn(2)Ge(2) has been studied by high pressure inelastic X-ray emission and absorption spectroscopy in the partial fluorescence yield mode up to 30 GPa. The crystal structure of YbMn(2)Ge(2) has been investigated by high pressure powder X-ray diffraction experiments up to 40 GPa. The experimental investigations have been complemented by first principles density functional theoretical calculations using the generalized gradient approximation with an evolutionary algorithm for structural determination. The Yb valence and magnetic structures have been calculated using the self-interaction corrected local spin density approximation. The X-ray emission results indicate a sharp increase of Yb valence from v = 2.42(2) to v = 2.75(3) around 1.35 GPa, and Yb reaches a near trivalent state (v = 2.95(3)) around 30 GPa. Further, a new monoclinic P1 type high pressure phase is found above 35 GPa; this structure is characterized by the Mn layer of the ambient (I4/mmm) structure transforming into a double layer. The theoretical calculations yield an effective valence of v = 2.48 at ambient pressure in agreement with experiment, although the pure trivalent state is attained theoretically at significantly higher pressures (above 40 GPa).

4.
J Phys Chem Lett ; 12(3): 1046-1051, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470818

RESUMO

Half-Heusler thermoelectric materials are potential candidates for high thermoelectric efficiency. We report high-pressure thermoelectric and structural property measurements, density functional theory calculations on the half-Heusler material TiNiSn, and an increase of 15% in the relative dimensionless figure of merit, ZT, around 3 GPa. Thermal and electrical properties were measured utilizing a specialized sample cell assembly designed for the Paris-Edinburgh large-volume press to a maximum pressure of 3.5 GPa. High-pressure structural measurements performed up to 50 GPa in a diamond-anvil cell indicated the emergence of a new high-pressure phase around 20 GPa. A first-principles structure search performed using an ab initio random structure search approach identified the high-pressure phase as an orthorhombic type, in good agreement with the experimental results.

5.
J Phys Chem B ; 114(39): 12597-606, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20839813

RESUMO

We have investigated the high-pressure crystal and electronic structures of superconducting FeSe by high-resolution synchrotron powder X-ray diffraction and density functional theory (DFT) calculations at ambient and at low temperatures down to 8 K. Ambient nuclear resonant inelastic X-ray scattering (NRIXS) experiments were performed on FeSe to understand the partial phonon density of states (PDOS) of the high-pressure phases. On the basis of our experimental results and DFT calculations, we demonstrate a pressure-induced distortion of the low-temperature Cmma phase at around 1.6 GPa and the appearance of a high-pressure Pbnm phase. Upon increasing the pressure above 9 GPa, the orthorhombic phase becomes the major phase, and a mixed-phase region exists up to 26 GPa. The pressure-induced structural changes in this system and its connection to T(c) enhancement are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA