Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870129

RESUMO

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulação para Baixo , RNA de Transferência/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
2.
Nucleic Acids Res ; 52(9): 4872-4888, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412296

RESUMO

microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.


Assuntos
Ciclo Celular , MicroRNAs , RNA Longo não Codificante , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Ciclo Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
RNA ; 30(1): 26-36, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879863

RESUMO

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Animais , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peso Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
4.
Nucleic Acids Res ; 47(7): 3594-3606, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820541

RESUMO

Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.


Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Heligmosomatoidea/genética , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/genética , Heligmosomatoidea/patogenicidade , Humanos , Filogenia
5.
PLoS Biol ; 15(7): e2002266, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28749982

RESUMO

Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda.


Assuntos
Extremófilos/genética , Regulação da Expressão Gênica , Proteoma/metabolismo , Tardígrados/genética , Animais , Sequência de Bases , Mapeamento Cromossômico/veterinária , DNA/química , DNA/metabolismo , Dessecação , Extremófilos/crescimento & desenvolvimento , Extremófilos/fisiologia , Perfilação da Expressão Gênica/veterinária , Transferência Genética Horizontal , Ligação Genética , Tamanho do Genoma , Estudo de Associação Genômica Ampla/veterinária , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Família Multigênica , Filogenia , Proteoma/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Tardígrados/crescimento & desenvolvimento , Tardígrados/fisiologia
6.
J Evol Biol ; 32(3): 194-204, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523653

RESUMO

Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex- and tissue-specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male-biased than female-biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic-specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast-Z effect where hemizygosity influences the rate of adaptive substitutions.


Assuntos
Adaptação Biológica , Borboletas/genética , Evolução Molecular , Seleção Genética , Cromossomos Sexuais , Animais , Feminino , Trato Gastrointestinal/metabolismo , Expressão Gênica , Masculino , Ovário/metabolismo , Caracteres Sexuais , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 113(18): 5053-8, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27035985

RESUMO

Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.


Assuntos
Transferência Genética Horizontal , Tardígrados/genética , Animais , Artrópodes/genética , Genoma , Dados de Sequência Molecular , Filogenia
8.
Mol Cell Proteomics ; 13(10): 2527-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958169

RESUMO

Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies) identified differences that suggest a considerable underlying diversity of potential immunomodulators. The molecules identified in L. sigmodontis excretory-secretory products show promise not only for vaccination against filarial infections, but for the amelioration of allergy and autoimmune diseases.


Assuntos
Filariose/parasitologia , Filarioidea/crescimento & desenvolvimento , Proteínas de Helminto/genética , Proteômica/métodos , Animais , Modelos Animais de Doenças , Feminino , Filariose/sangue , Filarioidea/classificação , Filarioidea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Proteínas de Helminto/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores Sexuais
9.
Nucleic Acids Res ; 40(Database issue): D1295-300, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058131

RESUMO

Genome sequencing has been democratized by second-generation technologies, and even small labs can sequence metazoan genomes now. In this article, we describe '959 Nematode Genomes'--a community-curated semantic wiki to coordinate the sequencing efforts of individual labs to collectively sequence 959 genomes spanning the phylum Nematoda. The main goal of the wiki is to track sequencing projects that have been proposed, are in progress, or have been completed. Wiki pages for species and strains are linked to pages for people and organizations, using machine- and human-readable metadata that users can query to see the status of their favourite worm. The site is based on the same platform that runs Wikipedia, with semantic extensions that allow the underlying taxonomy and data storage models to be maintained and updated with ease compared with a conventional database-driven web site. The wiki also provides a way to track and share preliminary data if those data are not polished enough to be submitted to the official sequence repositories. In just over a year, this wiki has already fostered new international collaborations and attracted newcomers to the enthusiastic community of nematode genomicists. www.nematodegenomes.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Helmíntico , Genômica , Nematoides/genética , Animais , Internet , Anotação de Sequência Molecular , Nematoides/classificação , Análise de Sequência de DNA , Software
10.
BMC Genomics ; 14: 923, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24373391

RESUMO

BACKGROUND: The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS: We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS: Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.


Assuntos
Evolução Biológica , Enoplídios/genética , Genoma Helmíntico , Animais , Caenorhabditis elegans/genética , Enoplídios/crescimento & desenvolvimento , Biblioteca Gênica , Transcriptoma , Tribolium/genética , Trichinella spiralis/genética
11.
FASEB J ; 26(11): 4650-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22889830

RESUMO

The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.


Assuntos
Anti-Helmínticos/farmacologia , Dirofilaria immitis/genética , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Genoma Helmíntico , Vacinas/imunologia , Animais , Anti-Helmínticos/uso terapêutico , Dirofilaria immitis/efeitos dos fármacos , Dirofilaria immitis/imunologia , Dirofilaria immitis/microbiologia , Dirofilariose/tratamento farmacológico , Dirofilariose/prevenção & controle , Doenças do Cão/tratamento farmacológico , Doenças do Cão/prevenção & controle , Cães , Feminino , Variação Genética , Genoma Bacteriano , Masculino , Filogenia , Proteoma , RNA de Helmintos/química , Simbiose , Transcriptoma/genética , Wolbachia/genética , Wolbachia/fisiologia
12.
Wellcome Open Res ; 8: 24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864925

RESUMO

As genomic data transform our understanding of biodiversity, the Earth BioGenome Project (EBP) has set a goal of generating reference quality genome assemblies for all ~1.9 million described eukaryotic taxa. Meeting this goal requires coordination among many individual regional and taxon-focussed projects working under the EBP umbrella. Large-scale sequencing projects require ready access to validated genome-relevant metadata, such as genome sizes and karyotypes, but these data are dispersed across the literature, and directly measured values are lacking for most taxa. To meet these needs, we have developed Genomes on a Tree (GoaT), an Elasticsearch-powered datastore and search index for genome-relevant metadata and sequencing project plans and statuses. GoaT indexes publicly available metadata for all eukaryotic species and interpolates missing values through phylogenetic comparison. GoaT also holds target priority and sequencing status information for many projects affiliated to the EBP to aid project coordination. Metadata and status attributes in GoaT can be queried through a mature API, a web front end, and a command line interface. The web front end additionally provides summary visualisations for data exploration and reporting (see https://goat.genomehubs.org). GoaT currently holds direct or estimated values for over 70 taxon attributes and over 30 assembly attributes across 1.5 million eukaryotic species. The depth and breadth of curated data, frequent updates, and a versatile query interface make GoaT a powerful data aggregator and portal to explore and report underlying data for the eukaryotic tree of life. We illustrate this utility through a series of use cases from planning through to completion of a genome-sequencing project.

13.
Symbiosis ; 55(3): 119-126, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22448083

RESUMO

Second-generation sequencing has made possible the sequencing of genomes of interest for even small research groups. However, obtaining separate clean cultures and clonal or inbred samples of metazoan hosts and their bacterial symbionts is often difficult. We present a computational pipeline for separating metazoan and bacterial DNA in silico rather than at the bench. The method relies on the generation of deep coverage of all the genomes in a mixed sample using Illumina short-read sequencing technology, and using aggregate properties of the different genomes to identify read sets belonging to each. This inexpensive and rapid approach has been used to sequence several nematode genomes and their bacterial endosymbionts in the last year in our laboratory and can also be used to visualize and identify unexpected contaminants (or possible symbionts) in genomic DNA samples. We hope that this method will enable researchers studying symbiotic systems to move from gene-centric to genome-centric approaches.

14.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200157, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33813885

RESUMO

As sequencing becomes more accessible and affordable, the analysis of genomic and transcriptomic data has become a cornerstone of many research initiatives. Communities with a focus on particular taxa or ecosystems need solutions capable of aggregating genomic resources and serving them in a standardized and analysis-friendly manner. Taxon-focussed resources can be more flexible in addressing the needs of a research community than can universal or general databases. Here, we present MolluscDB, a genome and transcriptome database for molluscs. MolluscDB offers a rich ecosystem of tools, including an Ensembl browser, a BLAST server for homology searches and an HTTP server from which any dataset present in the database can be downloaded. To demonstrate the utility of the database and verify the quality of its data, we imported data from assembled genomes and transcriptomes of 22 species, estimated the phylogeny of Mollusca using single-copy orthologues, explored patterns of gene family size change and interrogated the data for biomineralization-associated enzymes and shell matrix proteins. MolluscDB provides an easy-to-use and openly accessible data resource for the research community. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Assuntos
Bases de Dados Genéticas , Genoma , Moluscos/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Genômica
15.
BMC Genomics ; 11: 571, 2010 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-20950480

RESUMO

BACKGROUND: Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. RESULTS: Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. CONCLUSIONS: Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible final product, and this strategy is recommended.


Assuntos
Bases de Dados Genéticas , Filarioidea/genética , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Temperatura , Algoritmos , Animais , Sequência de Bases , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica , Masculino , Padrões de Referência , Reprodutibilidade dos Testes , Alinhamento de Sequência
16.
BMC Genomics ; 11: 499, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20846421

RESUMO

BACKGROUND: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. RESULTS: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. CONCLUSIONS: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations.


Assuntos
Artemisininas/farmacologia , Evolução Molecular Direcionada/métodos , Resistência a Medicamentos/genética , Genoma de Protozoário/genética , Mutação/genética , Plasmodium chabaudi/genética , Análise de Sequência de DNA/métodos , Animais , Artemisininas/uso terapêutico , Simulação por Computador , Variações do Número de Cópias de DNA/genética , Genes de Protozoários , Genótipo , Humanos , Mutação INDEL/genética , Malária/tratamento farmacológico , Malária/parasitologia , Mutagênese Insercional/efeitos dos fármacos , Mutagênese Insercional/genética , Parasitos/efeitos dos fármacos , Parasitos/genética , Fenótipo , Filogenia , Plasmodium chabaudi/efeitos dos fármacos , Mutação Puntual/genética , Pirimetamina/farmacologia , Deleção de Sequência/efeitos dos fármacos , Deleção de Sequência/genética
17.
Mol Ecol ; 19 Suppl 1: 240-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20331783

RESUMO

The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine-scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next-generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.


Assuntos
Borboletas/genética , Perfilação da Expressão Gênica , Asas de Animais , Alelos , Processamento Alternativo , Animais , Borboletas/crescimento & desenvolvimento , Mapeamento Cromossômico , Evolução Molecular , Genes de Insetos , Fenótipo , Análise de Sequência de DNA/métodos
18.
Int J Parasitol ; 50(9): 719-729, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32659276

RESUMO

Extracellular vesicles (EVs) have emerged as a ubiquitous component of helminth excretory-secretory products that can deliver parasite molecules to host cells to elicit immunomodulatory effects. RNAs are one type of cargo molecule that can underpin EV functions, hence there is extensive interest in characterising the RNAs that are present in EVs from different helminth species. Here we outline methods for identifying all of the small RNAs (sRNA) in helminth EVs and address how different methodologies may influence the sRNAs detected. We show that different EV purification methods introduce relatively little variation in the sRNAs that are detected, and that different RNA library preparation methods yielded larger differences. We compared the EV sRNAs in the gastrointestinal nematode Heligmosomoides bakeri with those in EVs from the distantly related gastrointestinal nematode Trichuris muris, and found that many of the sRNAs in both organisms derive from repetitive elements or intergenic regions. However, only in H. bakeri do these RNAs contain a 5' triphosphate, and Guanine (G) starting nucleotide, consistent with their biogenesis by RNA-dependent RNA polymerases (RdRPs). Distinct microRNA (miRNA) families are carried in EVs from each parasite, with H. bakeri EVs specific for miR-71, miR-49, miR-63, miR-259 and miR-240 gene families, and T. muris EVs specific for miR-1, miR-1822 and miR-252, and enriched for miR-59, miR-72 and miR-44 families, with the miR-9, miR-10, miR-80 and let-7 families abundant in both. We found a larger proportion of miRNA reads derive from the mouse host in T. muris EVs, compared with H. bakeri EVs. Our report underscores potential biases in the sRNAs sequenced based on library preparation methods, suggests specific nematode lineages have evolved distinct sRNA synthesis/export pathways, and highlights specific differences in EV miRNAs from H. bakeri and T. muris that may underpin functional adaptation to their host niches.


Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs , RNA de Helmintos , RNA Interferente Pequeno , Trichuris/metabolismo , Animais , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo
19.
Evol Lett ; 4(1): 19-33, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32055408

RESUMO

Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.

20.
PLoS Negl Trop Dis ; 13(11): e0007811, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31770367

RESUMO

BACKGROUND: The release of small non-coding RNAs (sRNAs) has been reported in parasitic nematodes, trematodes and cestodes of medical and veterinary importance. However, little is known regarding the diversity and composition of sRNAs released by different lifecycle stages and the portion of sRNAs that persist in host tissues during filarial infection. This information is relevant to understanding potential roles of sRNAs in parasite-to-host communication, as well as to inform on the location within the host and time point at which they can be detected. METHODOLOGY AND PRINCIPAL FINDINGS: We have used small RNA (sRNA) sequencing analysis to identify sRNAs in replicate samples of the excretory-secretory (ES) products of developmental stages of the filarial nematode Litomosoides sigmodontis in vitro and compare this to the parasite-derived sRNA detected in host tissues. We show that all L. sigmodontis developmental stages release RNAs in vitro, including ribosomal RNA fragments, 5'-derived tRNA fragments (5'-tRFs) and, to a lesser extent, microRNAs (miRNAs). The gravid adult females (gAF) produce the largest diversity and abundance of miRNAs in the ES compared to the adult males or microfilariae. Analysis of sRNAs detected in serum and macrophages from infected animals reveals that parasite miRNAs are preferentially detected in vivo, compared to their low levels in the ES products, and identifies miR-92-3p and miR-71-5p as L. sigmodontis miRNAs that are stably detected in host cells in vivo. CONCLUSIONS: Our results suggest that gravid adult female worms secrete the largest diversity of extracellular sRNAs compared to adult males or microfilariae. We further show differences in the parasite sRNA biotype distribution detected in vitro versus in vivo. We identify macrophages as one reservoir for parasite sRNA during infection, and confirm the presence of parasite miRNAs and tRNAs in host serum during patent infection.


Assuntos
Filariose/genética , Filarioidea/genética , Filarioidea/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Pequeno RNA não Traduzido/sangue , Animais , Líquidos Corporais , Feminino , Filariose/parasitologia , Estágios do Ciclo de Vida , Macrófagos , Masculino , Camundongos , MicroRNAs/genética , Microfilárias , RNA Ribossômico , RNA de Transferência , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA