Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
2.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
3.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649874

RESUMO

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteogenômica , Adenocarcinoma de Pulmão/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica , Fenótipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
4.
Cell ; 149(7): 1622-34, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726445

RESUMO

Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias/genética , Pseudogenes/genética , Transcriptoma , Sequência de Aminoácidos , Sequência de Bases , Neoplasias da Mama/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Análise de Sequência de RNA
5.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099557

RESUMO

Diverse subtypes of renal cell carcinomas (RCCs) display a wide spectrum of histomorphologies, proteogenomic alterations, immune cell infiltration patterns, and clinical behavior. Delineating the cells of origin for different RCC subtypes will provide mechanistic insights into their diverse pathobiology. Here, we employed single-cell RNA sequencing (scRNA-seq) to develop benign and malignant renal cell atlases. Using a random forest model trained on this cell atlas, we predicted the putative cell of origin for more than 10 RCC subtypes. scRNA-seq also revealed several attributes of the tumor microenvironment in the most common subtype of kidney cancer, clear cell RCC (ccRCC). We elucidated an active role for tumor epithelia in promoting immune cell infiltration, potentially explaining why ccRCC responds to immune checkpoint inhibitors, despite having a low neoantigen burden. In addition, we characterized an association between high endothelial cell types and lack of response to immunotherapy in ccRCC. Taken together, these single-cell analyses of benign kidney and RCC provide insight into the putative cell of origin for RCC subtypes and highlight the important role of the tumor microenvironment in influencing ccRCC biology and response to therapy.


Assuntos
Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Análise de Célula Única , Carcinoma de Células Renais/imunologia , Sobrevivência Celular , Células Endoteliais/patologia , Células Epiteliais/patologia , Humanos , Imunoterapia , Rim/patologia , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/patologia , Resultado do Tratamento
6.
Cancer ; 129(23): 3783-3789, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698493

RESUMO

BACKGROUND: This study aimed to understand the differential levels of inflammatory chemokines in association with higher prostate cancer incidence and mortality in African American (AA) men than in Caucasians (CA). METHODS: The authors used a chemokine assay to simultaneously measure 40 chemokines and cytokines levels in the serum of preoperative prostate cancer patients and healthy controls of AA and CA races. Selected chemokines (CXCL2, CXCL5, and CCL23) serum level was validated in 211 serum samples from prostate cancer patients and healthy controls. Differential expression of CXCL5 and CCL23 was analyzed using immunohistochemistry in a representative cohort of prostate tumor tissues of AA and CA races. RESULTS: Race-specific comparisons from 211 serum samples showed significantly higher levels of CXCL2 (control: 3104.0 pg/mL vs. cancer: 2451.0 pg/mL) and CXCL5 (control: 5189.0 pg/mL vs. cancer: 5459.0 pg/mL) in AA men than in CAs (CXCL2; control: 1155.0 pg/mL vs. cancer: 889.3 pg/mL, and CXCL5; control: 1183.0 pg/mL vs. cancer: 977.5 pg/mL). CCL23 differed significantly within and between the races with a lower level in AA cancer cases (454.5 vs. 966.6 pg/mL) than healthy controls (740.5 vs. 1263.0 pg/mL). Patient age, prostate-specific antigen, or Gleason scores were not significantly associated with these chemokines. Immunostaining for CXCL5 and CCL23 in a representative cohort of archival prostate tissues displayed significantly higher CXCL5 in prostate tumors than in adjacent benign tissues, whereas CCL23 was nondetectable in most of the analyzed tumor tissues. CONCLUSION: Lower levels of CCL23 in AA prostate cancer patient sera and tumor tissues and high CXCL2 and CXCL5 may contribute to aggressive prostate cancer, as often seen in AA men. The disproportionate levels of serum chemokines associated with race warrant further exploration to improve equitability in precision oncology to benefit prostate cancer patients.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Fatores Raciais , Neoplasias da Próstata/patologia , Quimiocinas , Antígeno Prostático Específico
7.
Nature ; 548(7667): 297-303, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783718

RESUMO

Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.


Assuntos
Genética Médica , Genômica , Metástase Neoplásica/genética , Adulto , Classe I de Fosfatidilinositol 3-Quinases/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Reparo do DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a Retinoblastoma/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
8.
J Natl Compr Canc Netw ; 20(2): 203-214, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130506

RESUMO

Patients with advanced hepatocellular or biliary cancers have a dismal prognosis with limited efficacy from standard systemic therapies. The benefit of precision medicine has so far been limited to a subset of biliary cancers, including FGFR rearrangements; hotspot mutations in IDH1/2, BRAF, and BRCA1/2; and other rare alterations. In contrast, hepatocellular carcinoma, an inflammation-driven cancer with an immune-infiltrated microenvironment, provides a promising opportunity for immunotherapy, compared with the highly desmoplastic immune desert or excluded stromal microenvironment in biliary cancers. The immune contexture in hepatobiliary cancers is mostly immunosuppressive, protumorigenic, and exhausted, which together with low tumor mutation burden and decreased neoantigens provides challenges for immunotherapy. A better understanding of the spatiotemporal profile of T cells within the tumor microenvironment and the dynamic interplay of immune modulators in the context of standard or experimental therapies is crucial to define additional markers of response and design evidence-based combinatorial regimens. This review considers recent literature in this area and highlights promising leads and emerging trends.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Subpopulações de Linfócitos T , Microambiente Tumoral/genética
9.
J Pediatr Hematol Oncol ; 44(2): e576-e579, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930008

RESUMO

Posterior fossa ependymomas A confer the worst prognosis among all subtypes. They demonstrate distinct epigenetic changes, which can be targeted with epigenetic modifiers like histone deacetylase inhibitors (Vorinostat). We describe a 3-year-old male diagnosed with a posterior fossa ependymoma who had a number of recurrences requiring multimodal therapy. Molecular analysis demonstrated a BCL-6 corepressor mutation, and methylation profiling matched with posterior fossa ependymomas A. He received craniospinal irradiation and focal boost with Vorinostat. Serial imaging after irradiation revealed a progressively decreasing tumor burden with nearly complete resolution of disease at 15 months. Histone deacetylase inhibitors demonstrate promise in treatment of carefully selected cases of ependymoma.


Assuntos
Ependimoma , Inibidores de Histona Desacetilases , Pré-Escolar , Terapia Combinada , Ependimoma/genética , Ependimoma/patologia , Ependimoma/terapia , Humanos , Masculino , Vorinostat/uso terapêutico
10.
Mol Cell ; 49(1): 80-93, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23159737

RESUMO

Histone methyltransferases (HMTases), as chromatin modifiers, regulate the transcriptomic landscape in normal development as well in diseases such as cancer. Here, we molecularly order two HMTases, EZH2 and MMSET, that have established genetic links to oncogenesis. EZH2, which mediates histone H3K27 trimethylation and is associated with gene silencing, was shown to be coordinately expressed and function upstream of MMSET, which mediates H3K36 dimethylation and is associated with active transcription. We found that the EZH2-MMSET HMTase axis is coordinated by a microRNA network and that the oncogenic functions of EZH2 require MMSET activity. Together, these results suggest that the EZH2-MMSET HMTase axis coordinately functions as a master regulator of transcriptional repression, activation, and oncogenesis and may represent an attractive therapeutic target in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias da Próstata/enzimologia , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Embrião de Galinha , Membrana Corioalantoide/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Expressão Gênica , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Complexo Repressor Polycomb 2/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , Proteínas Repressoras/genética , Análise Serial de Tecidos , Ativação Transcricional
13.
J Neurooncol ; 137(1): 155-169, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29235051

RESUMO

The number of targeted therapies utilized in precision medicine are rapidly increasing. Neuro-oncology offers a unique challenge due to the varying blood brain barrier (BBB) penetration of each agent. Neuro-oncologists face a difficult task weighing the growing number of potential targeted therapies and their likelihood of BBB penetration. We developed the CNS TAP Working Group and performed an extensive literature review for the evidence-based creation of the CNS TAP tool, which was retrospectively validated by analyzing brain tumor patients who underwent therapy targeted based on genomic results from an academic sequencing study (MiOncoseq, n = 17) or private molecular profiling (Foundation One, n = 7). The CNS TAP tool scores relevant targeted agents by applying multiple variables (i.e., pre-clinical data, clinical data, BBB permeability) to patient specific genomic information and clinical trial availability. In the Michigan cohort, the CNS TAP tool predicted the selected agent 85.7% of the time. The CNS TAP tool predicted the agent independently selected by pediatric neuro-oncologists in the Colorado cohort 50% of the time. Patients with recurrent brain tumors treated with agents predicted by the CNS TAP tool demonstrated a median progression-free survival of 4 months and four patients with recurrent high-grade glioma maintained ongoing partial responses of at least 6 months. The CNS TAP tool is a formalized algorithm to assist clinicians select the optimal targeted therapy for neuro-oncology patients. The CNS TAP tool has relatively high concordance with selected therapies and clinical outcomes in patients receiving targeted therapy in this heterogeneous retrospective cohort were promising.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Tomada de Decisão Clínica/métodos , Medicina de Precisão/métodos , Adolescente , Adulto , Algoritmos , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Humanos , Lactente , Oncologia/métodos , Estudos Retrospectivos
15.
Proc Natl Acad Sci U S A ; 110(6): 2240-5, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345452

RESUMO

Steady-state gene expression is a coordination of synthesis and decay of RNA through epigenetic regulation, transcription factors, micro RNAs (miRNAs), and RNA-binding proteins. Here, we present bromouride labeling and sequencing (Bru-Seq) and bromouridine pulse-chase and sequencing (BruChase-Seq) to assess genome-wide changes to RNA synthesis and stability in human fibroblasts at homeostasis and after exposure to the proinflammatory tumor necrosis factor (TNF). The inflammatory response in human cells involves rapid and dramatic changes in gene expression, and the Bru-Seq and BruChase-Seq techniques revealed a coordinated and complex regulation of gene expression both at the transcriptional and posttranscriptional levels. The combinatory analysis of both RNA synthesis and stability using Bru-Seq and BruChase-Seq allows for a much deeper understanding of mechanisms of gene regulation than afforded by the analysis of steady-state total RNA and should be useful in many biological settings.


Assuntos
Inflamação/genética , Inflamação/metabolismo , Estabilidade de RNA , RNA/biossíntese , RNA/genética , Bromodesoxiuridina/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Humanos , Inflamação/etiologia , Íntrons , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/farmacologia
16.
J Pathol ; 232(5): 553-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395524

RESUMO

Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1-FAF1 and BCAS4-AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Carcinoma Papilar/genética , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Mutação , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Análise de Sequência de RNA , Fatores de Tempo
17.
Nature ; 458(7234): 97-101, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19136943

RESUMO

Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully used integrative transcriptome sequencing to 're-discover' the BCR-ABL1 (ref. 10) gene fusion in a chronic myelogenous leukaemia cell line and the TMPRSS2-ERG gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimaeric transcripts in cancer cell lines and tumours. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimaeras using high-throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/análise , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Análise de Sequência de DNA/instrumentação
18.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
19.
Cancer Res Commun ; 3(6): 1093-1103, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377606

RESUMO

The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets. We established six novel patient-derived xenograft (PDX) from BCBM from patients undergoing clinically indicated surgical resection of BCBM and used the PDXs as a drug screening platform to interrogate potential molecular targets. Many of the alterations were conserved in brain metastases compared with the matched primary. We observed differential expressions in the immune-related and metabolism pathways. The PDXs from BCBM captured the potentially targetable molecular alterations in the source brain metastases tumor. The alterations in the PI3K pathway were the most predictive for drug efficacy in the PDXs. The PDXs were also treated with a panel of over 350 drugs and demonstrated high sensitivity to histone deacetylase and proteasome inhibitors. Our study revealed significant differences between the paired BCBM and primary breast tumors with the pathways involved in metabolisms and immune functions. While molecular targeted drug therapy based on genomic profiling of tumors is currently evaluated in clinical trials for patients with brain metastases, a functional precision medicine strategy may complement such an approach by expanding potential therapeutic options, even for BCBM without known targetable molecular alterations. Significance: Examining genomic alterations and differentially expressed pathways in brain metastases may inform future therapeutic strategies. This study supports genomically-guided therapy for BCBM and further investigation into incorporating real-time functional evaluation will increase confidence in efficacy estimations during drug development and predictive biomarker assessment for BCBM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Medicina de Precisão , Fosfatidilinositol 3-Quinases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico
20.
Clin Cancer Res ; 29(13): 2394-2400, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37115501

RESUMO

PURPOSE: Devimistat (CPI-613) is a novel inhibitor of tumoral mitochondrial metabolism. We investigated the effect of devimistat in vitro and in a phase Ib clinical trial in patients with advanced biliary tract cancer (BTC). PATIENTS AND METHODS: Cell viability assays of devimistat ± gemcitabine and cisplatin (GC) were performed and the effect of devimistat on mitochondrial respiration via oxygen consumption rate (OCR) was evaluated. A phase Ib/II trial was initiated in patients with untreated advanced BTC. In phase Ib, devimistat was infused over 2 hours in combination with GC on days 1 and 8 every 21 days with a primary objective to determine the recommended phase II dose (RP2D). Secondary objectives included safety, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS: In vitro, devimistat with GC had a synergistic effect on two cell lines. Devimistat significantly decreased OCR at higher doses and in arms with divided dosing. In the phase Ib trial, 20 patients received a median of nine cycles (range, 3-19). One DLT was observed, and the RP2D of devimistat was determined to be 2,000 mg/m2 in combination with GC. Most common grade 3 toxicities included neutropenia (n = 11, 55%), anemia (n = 4, 20%), and infection (n = 3, 15%). There were no grade 4 toxicities. After a median follow-up of 15.6 months, ORR was 45% and median PFS was 10 months (95% confidence interval, 7.1-14.9). Median OS is not yet estimable. CONCLUSIONS: Devimistat in combination with GC is well tolerated and has an acceptable safety profile in patients with untreated advanced BTC.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Neutropenia , Humanos , Gencitabina , Cisplatino , Intervalo Livre de Doença , Desoxicitidina , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/etiologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neutropenia/induzido quimicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA