Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1937-1962, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242838

RESUMO

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Mutação , Proteólise
2.
Plant J ; 117(2): 332-341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985241

RESUMO

Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models. A remaining obstacle has been the limited in situ volume information of plastids and other cell organelles. To fill this gap for chloroplasts, we established three microscopy protocols delivering in situ volumes based on: (i) chlorophyll fluorescence emerging from the thylakoid membrane, (ii) a CFP marker embedded in the envelope, and (iii) calculations from serial block-face scanning electron microscopy (SBFSEM). The obtained data were corroborated by comparing wild-type data with two mutant lines affected in the plastid division machinery known to produce small and large mesophyll chloroplasts, respectively. Furthermore, we also determined the volume of the much smaller guard cell plastids. Interestingly, their volume is not governed by the same components of the division machinery which defines mesophyll plastid size. Based on our three approaches, the average volume of a mature Col-0 wild-type mesophyll chloroplasts is 93 µm3 . Wild-type guard cell plastids are approximately 18 µm3 . Lastly, our comparative analysis shows that the chlorophyll fluorescence analysis can accurately determine chloroplast volumes, providing an important tool to research groups without access to transgenic marker lines expressing genetically encoded fluorescence proteins or costly SBFSEM equipment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microscopia Eletrônica de Varredura , Plastídeos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Microscopia Confocal
3.
New Phytol ; 243(2): 543-559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515227

RESUMO

Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.


Assuntos
Cloroplastos , Homeostase , Cloroplastos/metabolismo , Íons/metabolismo , Transporte de Íons , Fotossíntese
4.
Plant Cell ; 33(7): 2479-2505, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34235544

RESUMO

The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.


Assuntos
Proteínas de Arabidopsis/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais/fisiologia
5.
Plant Physiol ; 190(2): 1117-1133, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876823

RESUMO

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.


Assuntos
Piruvato Ortofosfato Diquinase , Setaria (Planta) , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fosfatos/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo , Piruvato Ortofosfato Diquinase/química , Ácido Pirúvico/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(26): 15354-15362, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541018

RESUMO

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


Assuntos
Magnoliopsida/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastocianina/metabolismo , Simulação por Computador , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos
7.
Plant Physiol ; 187(4): 2110-2125, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618095

RESUMO

Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Membranas Intracelulares/metabolismo , Canais Iônicos/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Plastídeos/genética , Proteínas de Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Proteômica
8.
Plant Physiol ; 186(1): 142-167, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33779763

RESUMO

During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NAD , Fosfoglicerato Desidrogenase , Fotossíntese , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , NAD/metabolismo , Fosfoglicerato Desidrogenase/metabolismo
9.
J Exp Bot ; 73(1): 324-338, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34499172

RESUMO

Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd- and Fe-associated responses in wild-type Arabidopsis and in a mutant that overaccumulates Fe (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in the wild type but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2, we propose a model where reactive oxygen species prevent the induction of genes that are induced in the wild type by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely to be the result of an impaired Fe sensing. Overall, our data suggest that Fe deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


Assuntos
Proteínas de Arabidopsis , Cádmio , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Ferro/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio
10.
Plant Physiol ; 180(3): 1322-1335, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31053658

RESUMO

Photosynthesis is limited by the slow relaxation of nonphotochemical quenching, which primarily dissipates excess absorbed light energy as heat. Because the heat dissipation process is proportional to light-driven thylakoid lumen acidification, manipulating thylakoid ion and proton flux via transport proteins could improve photosynthesis. However, an important aspect of the current understanding of the thylakoid ion transportome is inaccurate. Using fluorescent protein fusions, we show that the Arabidopsis (Arabidopsis thaliana) two-pore K+ channel TPK3, which had been reported to mediate thylakoid K+ flux, localizes to the tonoplast, not the thylakoid. The localization of TPK3 outside of the thylakoids is further supported by the absence of TPK3 in isolated thylakoids as well as the inability of isolated chloroplasts to import TPK3 protein. In line with the subcellular localization of TPK3 in the vacuole, we observed that photosynthesis in the Arabidopsis null mutant tpk3-1, which carries a transfer DNA insertion in the first exon, remains unaffected. To gain a comprehensive understanding of how thylakoid ion flux impacts photosynthetic efficiency under dynamic growth light regimes, we performed long-term photosynthesis imaging of established and newly isolated transthylakoid K+- and Cl--flux mutants. Our results underpin the importance of the thylakoid ion transport proteins potassium cation efflux antiporter KEA3 and voltage-dependent chloride channel VCCN1 and suggest that the activity of yet unknown K+ channel(s), but not TPK3, is critical for optimal photosynthesis in dynamic light environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotossíntese/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte de Íons/genética , Transporte de Íons/efeitos da radiação , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Mutação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Tilacoides/metabolismo
11.
Photosynth Res ; 145(1): 43-54, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31865509

RESUMO

The plastid potassium cation efflux antiporters (KEAs) are important for chloroplast function, development, and photosynthesis. To understand their regulation at the protein level is therefore of fundamental importance. Prior studies have focused on the regulatory K+ transport and NAD-binding (KTN) domain in the C-terminus of the thylakoid carrier KEA3 but the localization of this domain remains unclear. While all three plastid KEA members are highly conserved in their transmembrane region and the C-terminal KTN domain, only the inner envelope KEA family members KEA1 and KEA2 carry a long soluble N-terminus. Interestingly, this region is acetylated at lysine 168 by the stromal acetyltransferase enzyme NSI. If an odd number of transmembrane domains existed for inner envelope KEAs, as it was suggested for all three plastid KEA carriers, regulatory domains and consequently protein regulation would occur on opposing sides of the inner envelope. In this study we therefore set out to investigate the topology of inner envelope KEA proteins. Using a newly designed antibody specific to the envelope KEA1 N-terminus and transgenic Arabidopsis plants expressing a C-terminal KEA1-YFP fusion protein, we show that both, the N-terminal and C-terminal, regulatory domains of KEA1 reside in the chloroplast stroma and not in the intermembrane space. Considering the high homology between KEA1 and KEA2, we therefore reason that envelope KEAs must consist of an even number of transmembrane domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotossíntese , Antiportadores de Potássio-Hidrogênio/metabolismo , Potássio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Cloroplastos/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Tilacoides/metabolismo
12.
Photosynth Res ; 145(1): 15-30, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31975158

RESUMO

The photosynthetic machinery of plants can acclimate to changes in light conditions by balancing light-harvesting between the two photosystems (PS). This acclimation response is induced by the change in the redox state of the plastoquinone pool, which triggers state transitions through activation of the STN7 kinase and subsequent phosphorylation of light-harvesting complex II (LHCII) proteins. Phosphorylation of LHCII results in its association with PSI (state 2), whereas dephosphorylation restores energy allocation to PSII (state 1). In addition to state transition regulation by phosphorylation, we have recently discovered that plants lacking the chloroplast acetyltransferase NSI are also locked in state 1, even though they possess normal LHCII phosphorylation. This defect may result from decreased lysine acetylation of several chloroplast proteins. Here, we compared the composition of wild type (wt), stn7 and nsi thylakoid protein complexes involved in state transitions separated by Blue Native gel electrophoresis. Protein complex composition and relative protein abundances were determined by LC-MS/MS analyses using iBAQ quantification. We show that despite obvious mechanistic differences leading to defects in state transitions, no major differences were detected in the composition of PSI and LHCII between the mutants. Moreover, both stn7 and nsi plants show retarded growth and decreased PSII capacity under fluctuating light as compared to wt, while the induction of non-photochemical quenching under fluctuating light was much lower in both nsi mutants than in stn7.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Fotossíntese , Arabidopsis/genética , Cromatografia Líquida , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Oxirredução , Fosforilação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Espectrometria de Massas em Tandem , Tilacoides/metabolismo
13.
Plant J ; 96(2): 316-328, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030857

RESUMO

Cytidine triphosphate (CTP) is essential for DNA, RNA and phospholipid biosynthesis. De novo synthesis is catalyzed by CTP synthases (CTPS). Arabidopsis encodes five CTPS isoforms that unanimously share conserved motifs found across kingdoms, suggesting all five are functional enzymes. Whereas CTPS1-4 are expressed throughout Arabidopsis tissues, CTPS5 reveals exclusive expression in developing embryos. CTPS activity and substrates affinities were determined for a representative plant enzyme on purified recombinant CTPS3 protein. As demonstrated in model organisms such as yeast, fruit fly and mammals, CTPS show the capacity to assemble into large filaments called cytoophidia. Transient expression of N- and C-terminal YFP-CTPS fusion proteins in Nicotiana benthamiana allowed to monitor such filament formation. Interestingly, CTPS1 and 2 always appeared as soluble proteins, whereas filaments were observed for CTPS3, 4 and 5 independent of the YFP-tag location. However, when similar constructs were expressed in Saccharomyces cerevisiae, no filaments were observed, pointing to a requirement for organism-specific factors in vivo. Indications for filament assembly were also obtained in vitro when recombinant CTPS3 protein was incubated in the presence of CTP. T-DNA-insertion mutants in four CTPS loci revealed no apparent phenotypical alteration. In contrast, CTPS2 T-DNA-insertion mutants did not produce homozygous progenies. An initial characterization of the CTPS protein family members from Arabidopsis is presented. We provide evidence for their involvement in nucleotide de novo synthesis and show that only three of the five CTPS isoforms were able to form filamentous structures in the transient tobacco expression system. This represents a striking difference from previous observations in prokaryotes, yeast, Drosophila and mammalian cells. This finding will be highly valuable to further understand the role of filament formation to regulate CTPS activity.


Assuntos
Arabidopsis/enzimologia , Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Ligases/genética , Citoesqueleto/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
15.
Proc Natl Acad Sci U S A ; 113(35): E5242-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528686

RESUMO

Plants experience hyperosmotic stress when faced with saline soils and possibly with drought stress, but it is currently unclear how plant roots perceive this stress in an environment of dynamic water availabilities. Hyperosmotic stress induces a rapid rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) in plants, and this Ca(2+) response may reflect the activities of osmo-sensory components. Here, we find in the reference plant Arabidopsis thaliana that the rapid hyperosmotic-induced Ca(2+) response exhibited enhanced response magnitudes after preexposure to an intermediate hyperosmotic stress. We term this phenomenon "osmo-sensory potentiation." The initial sensing and potentiation occurred in intact plants as well as in roots. Having established a quantitative understanding of wild-type responses, we investigated effects of pharmacological inhibitors and candidate channel/transporter mutants. Quintuple mechano-sensitive channels of small conductance-like (MSL) plasma membrane-targeted channel mutants as well as double mid1-complementing activity (MCA) channel mutants did not affect the response. Interestingly, however, double mutations in the plastid K(+) exchange antiporter (KEA) transporters kea1kea2 and a single mutation that does not visibly affect chloroplast structure, kea3, impaired the rapid hyperosmotic-induced Ca(2+) responses. These mutations did not significantly affect sensory potentiation of the response. These findings suggest that plastids may play an important role in early steps mediating the response to hyperosmotic stimuli. Together, these findings demonstrate that the plant osmo-sensory components necessary to generate rapid osmotic-induced Ca(2+) responses remain responsive under varying osmolarities, endowing plants with the ability to perceive the dynamic intensities of water limitation imposed by osmotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cloroplastos/metabolismo , Mutação , Osmorregulação/efeitos dos fármacos , Pressão Osmótica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Tilacoides/metabolismo
17.
Plant Physiol ; 171(2): 788-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208296

RESUMO

Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Amido/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Células do Mesofilo/fisiologia , Mutação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/genética , Plastídeos/enzimologia
18.
Plant Physiol ; 172(1): 441-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443603

RESUMO

It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Osmose , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/ultraestrutura , Antiportadores de Potássio-Hidrogênio/classificação , Antiportadores de Potássio-Hidrogênio/genética , Tilacoides/química , Tilacoides/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(20): 7480-5, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24794527

RESUMO

Multiple K(+) transporters and channels and the corresponding mutants have been described and studied in the plasma membrane and organelle membranes of plant cells. However, knowledge about the molecular identity of chloroplast K(+) transporters is limited. Potassium transport and a well-balanced K(+) homeostasis were suggested to play important roles in chloroplast function. Because no loss-of-function mutants have been identified, the importance of K(+) transporters for chloroplast function and photosynthesis remains to be determined. Here, we report single and higher-order loss-of-function mutants in members of the cation/proton antiporters-2 antiporter superfamily KEA1, KEA2, and KEA3. KEA1 and KEA2 proteins are targeted to the inner envelope membrane of chloroplasts, whereas KEA3 is targeted to the thylakoid membrane. Higher-order but not single mutants showed increasingly impaired photosynthesis along with pale green leaves and severely stunted growth. The pH component of the proton motive force across the thylakoid membrane was significantly decreased in the kea1kea2 mutants, but increased in the kea3 mutant, indicating an altered chloroplast pH homeostasis. Electron microscopy of kea1kea2 leaf cells revealed dramatically swollen chloroplasts with disrupted envelope membranes and reduced thylakoid membrane density. Unexpectedly, exogenous NaCl application reversed the observed phenotypes. Furthermore, the kea1kea2 background enables genetic analyses of the functional significance of other chloroplast transporters as exemplified here in kea1kea2Na(+)/H(+) antiporter1 (nhd1) triple mutants. Taken together, the presented data demonstrate a fundamental role of inner envelope KEA1 and KEA2 and thylakoid KEA3 transporters in chloroplast osmoregulation, integrity, and ion and pH homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Cloroplastos/metabolismo , Osmorregulação , Plastídeos/metabolismo , Antiportadores de Potássio-Hidrogênio/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Íons , Mutação , Fenótipo , Fotossíntese , Folhas de Planta/metabolismo , Potássio/química , Tilacoides/metabolismo
20.
Plant Physiol ; 169(1): 760-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26175513

RESUMO

The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fluorescência , Germinação/efeitos dos fármacos , Imunoprecipitação , Mutação/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA