RESUMO
Over the past eight hundred thousand years, glacial-interglacial cycles oscillated with a period of one hundred thousand years ('100k world'1). Ice core and ocean sediment data have shown that atmospheric carbon dioxide, Antarctic temperature, deep ocean temperature, and global ice volume correlated strongly with each other in the 100k world2-6. Between about 2.8 and 1.2 million years ago, glacial cycles were smaller in magnitude and shorter in duration ('40k world'7). Proxy data from deep-sea sediments suggest that the variability of atmospheric carbon dioxide in the 40k world was also lower than in the 100k world8-10, but we do not have direct observations of atmospheric greenhouse gases from this period. Here we report the recovery of stratigraphically discontinuous ice more than two million years old from the Allan Hills Blue Ice Area, East Antarctica. Concentrations of carbon dioxide and methane in ice core samples older than two million years have been altered by respiration, but some younger samples are pristine. The recovered ice cores extend direct observations of atmospheric carbon dioxide, methane, and Antarctic temperature (based on the deuterium/hydrogen isotope ratio δDice, a proxy for regional temperature) into the 40k world. All climate properties before eight hundred thousand years ago fall within the envelope of observations from continuous deep Antarctic ice cores that characterize the 100k world. However, the lowest measured carbon dioxide and methane concentrations and Antarctic temperature in the 40k world are well above glacial values from the past eight hundred thousand years. Our results confirm that the amplitudes of glacial-interglacial variations in atmospheric greenhouse gases and Antarctic climate were reduced in the 40k world, and that the transition from the 40k to the 100k world was accompanied by a decline in minimum carbon dioxide concentrations during glacial maxima.
RESUMO
It is estimated that the explosive Hudson volcano eruption in Southern Chile injected approximately 2.7 km3 of basalt and trachyandesite tephra into the troposphere between August 8-15, 1991. The Hudson signal has been detected in Antarctica at the eastern sector and in South Pole snow. In this work, we track the Hudson volcanic plume using a dispersion model, remote sensing, and a re-analysis of a high-resolution ice core analysis from the Detroit Plateau in the Antarctic Peninsula and sedimentary records from shallow lakes from King George Island (KGI). The Hudson eruption imprint in these records is confirmed by using a weekly resolved aerosol concentration database from KGI demonstrating that the regional impact of Hudson eruption predominates over the Mount Pinatubo/Phillippines volcanic signal, dated from June 1991, in terms of particulate matter depositions. The aerosol elemental composition of Ca, Fe, Ti, Si, Al, Zn, and Pb increases from 2 to 3 orders of magnitude in background level during the days following the eruption of the Hudson volcano.
Assuntos
Substâncias Explosivas , Erupções Vulcânicas , Aerossóis/análise , Regiões Antárticas , Substâncias Explosivas/análise , Material Particulado/análiseRESUMO
Here, we present direct measurements of atmospheric composition and Antarctic climate from the mid-Pleistocene (â¼1 Ma) from ice cores drilled in the Allan Hills blue ice area, Antarctica. The 1-Ma ice is dated from the deficit in (40)Ar relative to the modern atmosphere and is present as a stratigraphically disturbed 12-m section at the base of a 126-m ice core. The 1-Ma ice appears to represent most of the amplitude of contemporaneous climate cycles and CO2 and CH4 concentrations in the ice range from 221 to 277 ppm and 411 to 569 parts per billion (ppb), respectively. These concentrations, together with measured δD of the ice, are at the warm end of the field for glacial-interglacial cycles of the last 800 ky and span only about one-half of the range. The highest CO2 values in the 1-Ma ice fall within the range of interglacial values of the last 400 ka but are up to 7 ppm higher than any interglacial values between 450 and 800 ka. The lowest CO2 values are 30 ppm higher than during any glacial period between 450 and 800 ka. This study shows that the coupling of Antarctic temperature and atmospheric CO2 extended into the mid-Pleistocene and demonstrates the feasibility of discontinuously extending the current ice core record beyond 800 ka by shallow coring in Antarctic blue ice areas.
RESUMO
To answer pressing new research questions about the rate and timing of abrupt climate transitions, a robust system for ultrahigh-resolution sampling of glacier ice is needed. Here, we present a multielement method of LA-ICP-MS analysis wherein an array of chemical elements is simultaneously measured from the same ablation area. Although multielement techniques are commonplace for high-concentration materials, prior to the development of this method, all LA-ICP-MS analyses of glacier ice involved a single element per ablation pass or spot. This new method, developed using the LA-ICP-MS system at the W. M. Keck Laser Ice Facility at the University of Maine Climate Change Institute, has already been used to shed light on our flawed understanding of natural levels of Pb in Earth's atmosphere.
Assuntos
Camada de Gelo , Espectrofotometria Atômica , LasersRESUMO
Chemical anomalies in polar ice core records are frequently linked to volcanism; however, without the presence of (crypto)tephra particles, links to specific eruptions remain speculative. Correlating tephras yields estimates of eruption timing and potential source volcano, offers refinement of ice core chronologies, and provides insights into volcanic impacts. Here, we report on sparse rhyolitic glass shards detected in the Roosevelt Island Climate Evolution (RICE) ice core (West Antarctica), attributed to the 1.8 ka Taupo eruption (New Zealand)-one of the largest and most energetic Holocene eruptions globally. Six shards of a distinctive geochemical composition, identical within analytical uncertainties to proximal Taupo glass, are accompanied by a single shard indistinguishable from glass of the ~25.5 ka Oruanui supereruption, also from Taupo volcano. This double fingerprint uniquely identifies the source volcano and helps link the shards to the climactic phase of the Taupo eruption. The englacial Taupo-derived glass shards coincide with a particle spike and conductivity anomaly at 278.84 m core depth, along with trachytic glass from a local Antarctic eruption of Mt. Melbourne. The assessed age of the sampled ice is 230 ± 19 CE (95% confidence), confirming that the published radiocarbon wiggle-match date of 232 ± 10 CE (2 SD) for the Taupo eruption is robust.
RESUMO
We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.
Assuntos
Monitoramento Ambiental/instrumentação , Gelo , Modelos Teóricos , Algoritmos , Monitoramento Ambiental/métodos , CongelamentoRESUMO
Decades of research have focused on establishing the exact year and climatic impact of the Minoan eruption of Thera, Greece (c.1680 to 1500 BCE). Ice cores offer key evidence to resolve this controversy, but attempts have been hampered by a lack of multivolcanic event synchronization between records. In this study, Antarctic and Greenland ice-core records are synchronized using a double bipolar sulfate marker, and calendar dates are assigned to each eruption revealed within the 'Thera period'. From this global-scale sequence of volcanic sulfate loading, we derive indications toward each eruption's latitude and potential to disrupt the climate system. Ultrafine sampling for sulfur isotopes and tephra conclusively demonstrate a colossal eruption of Alaska's Aniakchak II as the source of stratospheric sulfate in the now precisely dated 1628 BCE ice layer. These findings end decades of speculation that Thera was responsible for the 1628 BCE event, and place Aniakchak II (52 ± 17 Tg S) and an unknown volcano at 1654 BCE (50 ± 13 Tg S) as two of the largest Northern Hemisphere sulfur injections in the last 4,000 years. This opens possibilities to explore widespread climatic impacts for contemporary societies and, in pinpointing Aniakchak II, confirms that stratospheric sulfate can be globally distributed from eruptions outside the tropics. Dating options for Thera are reduced to a series of precisely dated, constrained stratospheric sulfur injection events at 1611 BCE, 1561/1558/1555BCE, and c.1538 BCE, which are all below 14 ± 5 Tg S, indicating a climatic forcing potential for Thera well below that of Tambora (1815 CE).
RESUMO
Tephra is a unique volcanic product with an unparalleled role in understanding past eruptions, long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, high-resolution time-stratigraphic markers across a range of sedimentary settings and thus are used in numerous disciplines (e.g., volcanology, climate science, archaeology). Nonetheless, the study of tephra deposits is challenged by a lack of standardization that inhibits data integration across geographic regions and disciplines. We present comprehensive recommendations for tephra data gathering and reporting that were developed by the tephra science community to guide future investigators and to ensure that sufficient data are gathered for interoperability. Recommendations include standardized field and laboratory data collection, reporting and correlation guidance. These are organized as tabulated lists of key metadata with their definition and purpose. They are system independent and usable for template, tool, and database development. This standardized framework promotes consistent documentation and archiving, fosters interdisciplinary communication, and improves effectiveness of data sharing among diverse communities of researchers.
Assuntos
ClimaRESUMO
The history of atmospheric oxygen (PO2) and the processes that act to regulate it remain enigmatic because of difficulties in quantitative reconstructions using indirect proxies. Here, we extend the ice-core record of PO2 using 1.5-million-year-old (Ma) discontinuous ice samples drilled from Allan Hills Blue Ice Area, East Antarctica. No statistically significant difference exists in PO2 between samples at 1.5 Ma and 810 thousand years (ka), suggesting that the Late-Pleistocene imbalance in O2 sources and sinks began around the time of the transition from 40- to 100-ka glacial cycles in the Mid-Pleistocene between ~1.2 Ma and 700 ka. The absence of a coeval secular increase in atmospheric CO2 over the past ~1 Ma requires negative feedback mechanisms such as Pco2-dependent silicate weathering. Fast processes must also act to suppress the immediate Pco2 increase because of the imbalance in O2 sinks over sources beginning in the Mid-Pleistocene.
RESUMO
The H1N1 "Spanish influenza" pandemic of 1918-1919 caused the highest known number of deaths recorded for a single pandemic in human history. Several theories have been offered to explain the virulence and spread of the disease, but the environmental context remains underexamined. In this study, we present a new environmental record from a European, Alpine ice core, showing a significant climate anomaly that affected the continent from 1914 to 1919. Incessant torrential rain and declining temperatures increased casualties in the battlefields of World War I (WWI), setting the stage for the spread of the pandemic at the end of the conflict. Multiple independent records of temperature, precipitation, and mortality corroborate these findings.
RESUMO
A large volcanic sulfate increase observed in ice core records around 1450 C.E. has been attributed in previous studies to a volcanic eruption from the submarine Kuwae caldera in Vanuatu. Both EPMA-WDS (electron microprobe analysis using a wavelength dispersive spectrometer) and SEM-EDS (scanning electron microscopy analysis using an energy dispersive spectrometer) analyses of five microscopic volcanic ash (cryptotephra) particles extracted from the ice interval associated with a rise in sulfate ca. 1458 C.E. in the South Pole ice core (SPICEcore) indicate that the tephra deposits are chemically distinct from those erupted from the Kuwae caldera. Recognizing that the sulfate peak is not associated with the Kuwae volcano, and likely not a large stratospheric tropical eruption, requires revision of the stratospheric sulfate injection mass that is used for parameterization of paleoclimate models. Future work is needed to confirm that a volcanic eruption from Mt. Reclus is one of the possible sources of the 1458 C.E. sulfate anomaly in Antarctic ice cores.
RESUMO
Understanding the context from which evidence emerges is of paramount importance in reaching robust conclusions in scientific inquiries. This is as true of the present as it is of the past. In a trans-disciplinary study such as More et al. (2017, https://doi.org/10.1002/2017GH000064) and many others appearing in this and similar journals, a proper analysis of context demands the use of historical evidence. This includes demographic, epidemiological, and socio-economic data-common in many studies of the impact of anthropogenic pollution on human health-and, as in this specific case, also geoarchaeological evidence. These records anchor climate and pollution data in the geographic and human circumstances of history, without which we lose a fundamental understanding of the data itself. This article addresses Hinkley (2018, https://doi.org/10.1002/2017GH000105) by highlighting the importance of context, focusing on the historical and archaeological evidence, and then discussing atmospheric deposition and circulation in the specific region of our study. Since many of the assertions in Bindler (2018, https://doi.org/10.1002/2018GH000135) are congruent with our findings and directly contradict Hinkley (2018), this reply refers to Bindler (2018), whenever appropriate, and indicates where our evidence diverges.
RESUMO
Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580 ± 258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.
RESUMO
Contrary to widespread assumptions, next-generation high (annual to multiannual) and ultra-high (subannual) resolution analyses of an Alpine glacier reveal that true historical minimum natural levels of lead in the atmosphere occurred only once in the last ~2000 years. During the Black Death pandemic, demographic and economic collapse interrupted metal production and atmospheric lead dropped to undetectable levels. This finding challenges current government and industry understanding of preindustrial lead pollution and its potential implications for human health of children and adults worldwide. Available technology and geographic location have limited previous ice core investigations. We provide new high- (discrete, inductively coupled plasma mass spectrometry, ICP-MS) and ultra-high resolution (laser ablation inductively coupled plasma mass spectrometry, LA-ICP-MS) records of atmospheric lead deposition extracted from the high Alpine glacier Colle Gnifetti, in the Swiss-Italian Alps. We show that contrary to the conventional wisdom, low levels at or approaching natural background occurred only in a single 4 year period in ~2000 years documented in the new ice core, during the Black Death (~1349-1353 C.E.), the most devastating pandemic in Eurasian history. Ultra-high chronological resolution allows for the first time detailed and decisive comparison of the new glaciochemical data with historical records. Historical evidence shows that mining activity ceased upwind of the core site from ~1349 to 1353, while concurrently on the glacier lead (Pb) concentrations-dated by layer counting confirmed by radiocarbon dating-dropped to levels below detection, an order of magnitude beneath figures deemed low in earlier studies. Previous assumptions about preindustrial "natural" background lead levels in the atmosphere-and potential impacts on humans-have been misleading, with significant implications for current environmental, industrial, and public health policy, as well as for the history of human lead exposure. Trans-disciplinary application of this new technology opens the door to new approaches to the study of the anthropogenic impact on past and present human health.