Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rheumatology (Oxford) ; 48(11): 1352-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19713442

RESUMO

OBJECTIVES: To investigate the expression and function of triggering receptor expressed on myeloid cells-1 (TREM-1) in the synovium of human RA patients as well as the level of soluble TREM-1 in the plasma of RA patients. METHODS: Twenty-four RA synovial samples were analysed by gene expression oligonucleotide microarrays. Expression levels of TREM-1 mRNA in murine CIA paws were determined by quantitative PCR (qPCR). TREM-1 protein expression was detected by immunohistochemistry in five RA synovial samples and two OA synovial samples. TREM-1-positive cells from five RA synovial tissues were analysed by FACS staining to determine the cell type. Activation of TREM-1 was tested in five RA synovial samples. Soluble TREM-1 was measured in serum from 32 RA patients. RESULTS: The expression of TREM-1 mRNA was found to increase 6.5-fold in RA synovial samples, whereas it was increased 132-fold in CIA paws. Increased numbers of TREM-1-positive cells were seen in RA synovium sections and these cells co-expressed CD14. Using a TREM-1-activating cross-linking antibody in RA synovial cultures, multiple pro-inflammatory cytokines were induced. The average amount of soluble TREM-1 in plasma from RA patients was found to be higher than that in plasma from healthy volunteers. CONCLUSIONS: These findings suggest that the presence of high levels of functionally active TREM-1 in RA synovium may contribute to the development or maintenance of RA, or both. Inhibiting TREM-1 activity may, therefore, have a therapeutic effect on RA. High levels of soluble TREM-1 in the plasma of RA patients compared with healthy volunteers may indicate disease activity.


Assuntos
Artrite Reumatoide/imunologia , Citocinas/biossíntese , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Membrana Sinovial/imunologia , Animais , Artrite Experimental/imunologia , Biomarcadores/metabolismo , Células Cultivadas , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética , Receptores Imunológicos/sangue , Receptores Imunológicos/genética , Receptor Gatilho 1 Expresso em Células Mieloides
3.
J Biol Chem ; 282(46): 33295-33304, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17848581

RESUMO

Tumor necrosis factor alpha (TNFalpha) is a pro-inflammatory cytokine that controls the initiation and progression of inflammatory diseases such as rheumatoid arthritis. Tpl2 is a MAPKKK in the MAPK (i.e. ERK) pathway, and the Tpl2-MEK-ERK signaling pathway is activated by the pro-inflammatory mediators TNFalpha, interleukin (IL)-1beta, and bacterial endotoxin (lipopolysaccharide (LPS)). Moreover, Tpl2 is required for TNFalpha expression. Thus, pharmacologic inhibition of Tpl2 should be a valid approach to therapeutic intervention in the pathogenesis of rheumatoid arthritis and other inflammatory diseases in humans. We have developed a series of highly selective and potent Tpl2 inhibitors, and in the present study we have used these inhibitors to demonstrate that the catalytic activity of Tpl2 is required for the LPS-induced activation of MEK and ERK in primary human monocytes. These inhibitors selectively target Tpl2 in these cells, and they block LPS- and IL-1beta-induced TNFalpha production in both primary human monocytes and human blood. In rheumatoid arthritis fibroblast-like synoviocytes these inhibitors block ERK activation, cyclooxygenase-2 expression, and the production of IL-6, IL-8, and prostaglandin E(2), and the matrix metalloproteinases MMP-1 and MMP-3. Taken together, our results show that inhibition of Tpl2 in primary human cell types can decrease the production of TNFalpha and other pro-inflammatory mediators during inflammatory events, and they further support the notion that Tpl2 is an appropriate therapeutic target for rheumatoid arthritis and other human inflammatory diseases.


Assuntos
Sangue/efeitos dos fármacos , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/fisiologia , Monócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/fisiologia , Líquido Sinovial/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Catálise , Dinoprostona/metabolismo , Células HeLa , Humanos , Concentração Inibidora 50 , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo
4.
Osteoarthritis Cartilage ; 12(8): 599-613, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15262240

RESUMO

INTRODUCTION: Articular cartilage matrix synthesis and degradation are dynamic processes that must be balanced for proper maintenance of the tissue. In osteoarthritis (OA), this balance is skewed toward degradation and ultimate loss of matrix. The transcriptional and/or activity levels of hundreds of genes are dysregulated in chondrocytes from osteoarthritic cartilage, and a subset of these genes may represent pivotal factors that could be modulated if their specific role in the disease process could be identified. OBJECTIVE: To investigate the role of ADAMTS-4 and ADAMTS-5 in cartilage matrix degradation by developing a chondrocyte pellet culture assay in combination with adenoviral gene expression, and to demonstrate the utility of this assay by assessing the specific functional contribution of these genes to cartilage matrix metabolism. METHODS: A full-length cDNA for bovine ADAMTS-4 (bADAMTS-4) was isolated, and used to evaluate the expression, regulation, and activity of this gene in bovine cartilage. Adenoviruses expressing bADAMTS-4, human ADAMTS-5 (hADAMTS-5) or human bone morphogenetic protein 2 (BMP-2) were used to infect primary chondrocytes, and their effect on extracellular matrix metabolism was assessed by monitoring the accumulation and release of glycosaminoglycans (GAG) in three-dimensional chondrocyte pellet cultures. RESULTS: Analysis of bADAMTS-4 transcriptional regulation in chondrocytes revealed that interleukin-1alpha (IL-1alpha) was the most potent inducer of bADAMTS-4 mRNA and subsequent aggrecan degradation in cartilage explant cultures of those cytokines tested. bADAMTS-4 mRNA induction by IL-1alpha was greater in nasal cartilage than in articular cartilage. Chondrocytes infected with adenovirus expressing either bADAMTS-4 or hADAMTS-5 genes showed increased aggrecan degradation in newly synthesized matrix by pellet cultures while chondrocytes overexpressing BMP-2 showed increased aggrecan synthesis. CONCLUSION: Adenoviral delivery of genes to primary bovine chondrocytes, followed by culture in three-dimensional pellet format and evaluation of extracellular matrix protein metabolism, is a useful functional assay for assessing the role of genes on cartilage matrix synthesis and degradation.


Assuntos
Cartilagem Articular/enzimologia , Condrócitos/enzimologia , Metaloendopeptidases/metabolismo , Proteínas ADAM , Proteína ADAMTS4 , Proteína ADAMTS5 , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cartilagem Articular/citologia , Bovinos , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Metaloendopeptidases/genética , Dados de Sequência Molecular , Pró-Colágeno N-Endopeptidase , RNA Mensageiro/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA