Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 152(4): 949-960, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390900

RESUMO

BACKGROUND: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.


Assuntos
Actinas , Fosfatidilinositol 3-Quinases , Humanos , Animais , Camundongos , Morte Celular , Mutação , Movimento Celular/genética , Dano ao DNA , Proteínas , 1-Fosfatidilinositol 4-Quinase
2.
J Allergy Clin Immunol ; 150(3): 676-689, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35469841

RESUMO

BACKGROUND: Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking toward the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVES: This study analyzed the function of Rab44, a large, atypical Rab guanosine triphosphatase highly expressed in MC, in the MC degranulation process. METHODS: Murine knockout (KO) mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis experiments and analyze granule translocation in bone marrow-derived MCs during degranulation. RESULTS: This study demonstrate that mice lacking Rab44 (KORab44) in their bone marrow-derived MCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane on FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator release, or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS: These results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.


Assuntos
Anafilaxia , Mastócitos , Proteínas rab de Ligação ao GTP/metabolismo , Anafilaxia/metabolismo , Animais , Degranulação Celular , Imunoglobulina E/metabolismo , Cinesinas , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Anafilaxia Cutânea Passiva , Receptores de IgE/metabolismo , Vesículas Secretórias/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 38(5): 1037-1051, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29519941

RESUMO

OBJECTIVE: Platelet secretion is crucial for many physiological platelet responses. Even though several regulators of the fusion machinery for secretory granule exocytosis have been identified in platelets, the underlying mechanisms are not yet fully characterized. APPROACH AND RESULTS: By studying a mouse model (cKO [conditional knockout]Kif5b) lacking Kif5b (kinesin-1 heavy chain) in its megakaryocytes and platelets, we evidenced unstable hemostasis characterized by an increase of blood loss associated to a marked tendency to rebleed in a tail-clip assay and thrombus instability in an in vivo thrombosis model. This instability was confirmed in vitro in a whole-blood perfusion assay under blood flow conditions. Aggregations induced by thrombin and collagen were also impaired in cKOKif5b platelets. Furthermore, P-selectin exposure, PF4 (platelet factor 4) secretion, and ATP release after thrombin stimulation were impaired in cKOKif5b platelets, highlighting the role of kinesin-1 in α-granule and dense granule secretion. Importantly, exogenous ADP rescued normal thrombin induced-aggregation in cKOKif5b platelets, which indicates that impaired aggregation was because of defective release of ADP and dense granules. Last, we demonstrated that kinesin-1 interacts with the molecular machinery comprising the granule-associated Rab27 (Ras-related protein Rab-27) protein and the Slp4 (synaptotagmin-like protein 4/SYTL4) adaptor protein. CONCLUSIONS: Our results indicate that a kinesin-1-dependent process plays a role for platelet function by acting into the mechanism underlying α-granule and dense granule secretion.


Assuntos
Plaquetas/enzimologia , Hemostasia , Cinesinas/metabolismo , Megacariócitos/enzimologia , Ativação Plaquetária , Vesículas Secretórias/enzimologia , Trombose/enzimologia , Trifosfato de Adenosina/sangue , Animais , Plaquetas/ultraestrutura , Modelos Animais de Doenças , Humanos , Cinesinas/sangue , Cinesinas/deficiência , Cinesinas/genética , Megacariócitos/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selectina-P/sangue , Agregação Plaquetária , Fator Plaquetário 4/sangue , Via Secretória , Vesículas Secretórias/genética , Vesículas Secretórias/ultraestrutura , Transdução de Sinais , Trombose/sangue , Trombose/genética , Trombose/patologia , Proteínas de Transporte Vesicular/sangue , Proteínas rab27 de Ligação ao GTP/sangue
4.
Blood ; 125(9): 1427-34, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25525117

RESUMO

The impairment of cytotoxic activity of lymphocytes disturbs immune surveillance and leads to the development of hemophagocytic lymphohistiocytic syndrome (HLH). Although cytotoxic T lymphocyte (CTL) control of HLH development is well documented, the role for natural killer (NK)-cell effector functions in the pathogenesis of this immune disorder remains unclear. In this study, we specifically targeted a defect in cytotoxicity to either CTL or NK cells in mice so as to dissect the contribution of these lymphocyte subsets to HLH-like disease severity after lymphocytic choriomeningitis virus (LCMV) infection. We found that NK-cell cytotoxicity was sufficient to protect mice from the fatal outcome that characterizes HLH-like disease and was also sufficient to reduce HLH-like manifestations. Mechanistically, NK-cell cytotoxicity reduced tissue infiltration by inflammatory macrophages and downmodulated LCMV-specific T-cell responses by limiting hyperactivation of CTL. Interestingly, the critical protective effect of NK cells on HLH was independent of interferon-γ secretion and changes in viral load. Therefore our findings identify a crucial role of NK-cell cytotoxicity in limiting HLH-like immunopathology, highlighting the important role of NK cytotoxic activity in immune homeostasis.


Assuntos
Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Proliferação de Células , Células Cultivadas , Interferon gama/metabolismo , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Linfo-Histiocitose Hemofagocítica/patologia , Linfo-Histiocitose Hemofagocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/patologia , Baço/virologia , Carga Viral
5.
Blood ; 121(4): 595-603, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23160464

RESUMO

Inherited defects of granule-dependent cytotoxicity led to the life-threatening immune disorder hemophagocytic lymphohistiocytosis (HLH), characterized by uncontrolled CD8 T-cell and macrophage activation. In a cohort of HLH patients with genetic abnormalities expected to result in the complete absence of perforin, Rab27a, or syntaxin-11, we found that disease severity as determined by age at HLH onset differed significantly, with a severity gradient from perforin (early onset) > Rab27a > syntaxin-11 (late onset). In parallel, we have generated a syntaxin-11-deficient (Stx11(-/-)) murine model that faithfully reproduced the manifestations of HLH after lymphocytic choriomeningitis virus (LCMV) infection. Stx11(-/-) murine lymphocytes exhibited a degranulation defect that could be rescued by expression of human syntaxin-11 but not expression of a C-terminal-truncated mutant. Comparison of the characteristics of LCMV infection-induced HLH in the murine counterparts of the 3 human conditions revealed a similar gradient in the phenotypic severity of HLH manifestations. Strikingly, the severity of HLH was not correlated with the LCMV load and not fully with differences in the intensity of cytotoxic activity. The capacity of antigen presentation differed in vivo between Rab27a- and Syntaxin-11-deficient mutants. Our data indicate that cytotoxic effectors may have other immune-regulatory roles in addition to their role in controlling viral replication.


Assuntos
Citotoxicidade Imunológica/genética , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Qa-SNARE/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Degranulação Celular , Modelos Animais de Doenças , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica , Linfo-Histiocitose Hemofagocítica/virologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Qa-SNARE/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Proteínas rab de Ligação ao GTP/imunologia
6.
Blood ; 119(17): 3879-89, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22308290

RESUMO

Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1-dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sinapses/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Western Blotting , Células Cultivadas , Grânulos Citoplasmáticos/imunologia , Imunofluorescência , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
7.
Nat Commun ; 11(1): 1817, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286311

RESUMO

Dendritic cells (DCs) constitute a specialized population of immune cells that present exogenous antigen (Ag) on major histocompatibility complex (MHC) class I molecules to initiate CD8 + T cell responses against pathogens and tumours. Although cross-presentation depends critically on the trafficking of Ag-containing intracellular vesicular compartments, the molecular machinery that regulates vesicular transport is incompletely understood. Here, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in their DCs exhibit a major impairment in cross-presentation and thus a poor in vivo anti-tumour response. We find that kinesin-1 critically regulates antigen cross-presentation in DCs, by controlling Ag degradation, the endosomal pH, and MHC-I recycling. Mechanistically, kinesin-1 appears to regulate early endosome maturation by allowing the scission of endosomal tubulations. Our results highlight kinesin-1's role as a molecular checkpoint that modulates the balance between antigen degradation and cross-presentation.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Cinesinas/metabolismo , Ácidos/metabolismo , Animais , Antígenos/metabolismo , Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Proliferação de Células , Endocitose , Antígenos de Histocompatibilidade Classe I/metabolismo , Cinesinas/deficiência , Camundongos Knockout , Camundongos Transgênicos , Microtúbulos/metabolismo , Neoplasias/patologia , Ovalbumina/imunologia , Solubilidade
8.
J Cell Biol ; 215(2): 203-216, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27810912

RESUMO

Cross-linking of mast cell (MC) IgE receptors (FcεRI) triggers degranulation of secretory granules (SGs) and the release of many allergic and inflammatory mediators. Although degranulation depends crucially on microtubule dynamics, the molecular machinery that couples SGs to microtubule-dependent transport is poorly understood. In this study, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in hematopoietic cells are less sensitive to IgE-mediated, passive, systemic anaphylaxis. After IgE-induced stimulation, bone marrow-derived MCs from Kif5b knockout mice exhibited a marked reduction in SG translocation toward the secretion site. In contrast, a lack of Kif5b did not affect cytokine secretion, early FcεRI-initiated signaling pathways, or microtubule reorganization upon FcεRI stimulation. We identified Slp3 as the critical effector linking kinesin-1 to Rab27b-associated SGs. Kinesin-1 recruitment to the Slp3/Rab27b effector complex was independent of microtubule reorganization but occurred only upon stimulation requiring phosphatidylinositol 3-kinase (PI3K) activity. Our findings demonstrate that PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex is critical for the microtubule-dependent movement of SGs required for MC degranulation.


Assuntos
Degranulação Celular , Cinesinas/metabolismo , Mastócitos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Membrana Celular/metabolismo , Citocinas/metabolismo , Ativação Enzimática , Camundongos Knockout , Microscopia de Vídeo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Receptores de IgE/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA