Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 366(2): 204-17, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542600

RESUMO

Cell adhesion molecules (CAMs) perform numerous functions during neural development. An individual CAM can play different roles during each stage of neuronal differentiation; however, little is known about how such functional switching is accomplished. Here we show that Drosophila N-cadherin (CadN) is required at multiple developmental stages within the same neuronal population and that its sub-cellular expression pattern changes between the different stages. During development of mushroom body neurons and motoneurons, CadN is expressed at high levels on growing axons, whereas expression becomes downregulated and restricted to synaptic sites in mature neurons. Phenotypic analysis of CadN mutants reveals that developing axons require CadN for axon guidance and fasciculation, whereas mature neurons for terminal growth and receptor clustering. Furthermore, we demonstrate that CadN downregulation can be achieved in cultured neurons without synaptic contact with other cells. Neuronal silencing experiments using Kir(2.1) indicate that neuronal excitability is also dispensable for CadN downregulation in vivo. Interestingly, downregulation of CadN can be prematurely induced by ectopic expression of a nonselective cation channel, dTRPA1, in developing neurons. Together, we suggest that switching of CadN expression during neuronal differentiation involves regulated cation influx within neurons.


Assuntos
Caderinas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Animais , Axônios/fisiologia , Diferenciação Celular , Drosophila/embriologia , Sistema Nervoso/metabolismo , Neurônios/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura
2.
Dev Biol ; 326(1): 224-36, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19084514

RESUMO

The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Proteínas Repressoras/fisiologia , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/embriologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gânglios dos Invertebrados/embriologia , Gânglios dos Invertebrados/crescimento & desenvolvimento , Gânglios dos Invertebrados/metabolismo , Corpos Pedunculados/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo
3.
Mol Cell Neurosci ; 38(1): 53-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18356078

RESUMO

Receptor tyrosine phosphatases (RPTPs) are required for axon guidance during embryonic development in Drosophila. Here we examine the roles of four RPTPs during development of the larval mushroom body (MB). MB neurons extend axons into parallel tracts known as the peduncle and lobes. The temporal order of neuronal birth is reflected in the organization of axons within these tracts. Axons of the youngest neurons, known as core fibers, extend within a single bundle at the center, while those of older neurons fill the outer layers. RPTPs are selectively expressed on the core fibers of the MB. Ptp10D and Ptp69D regulate segregation of the young axons into a single core bundle. Ptp69D signaling is required for axonal extension beyond the peduncle. Lar and Ptp69D are necessary for the axonal branching decisions that create the lobes. Avoidance of the brain midline by extending medial lobe axons involves signaling through Lar.


Assuntos
Axônios/enzimologia , Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Drosophila/crescimento & desenvolvimento , Corpos Pedunculados/enzimologia , Corpos Pedunculados/crescimento & desenvolvimento , Proteínas Tirosina Fosfatases/fisiologia , Animais , Axônios/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila/citologia , Proteínas de Drosophila/genética , Larva/citologia , Larva/enzimologia , Larva/crescimento & desenvolvimento , Mosaicismo/embriologia , Corpos Pedunculados/citologia , Vias Neurais/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia
4.
Mech Dev ; 120(10): 1113-26, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14568101

RESUMO

The Drosophila Pax-6 homologs eyeless (ey) and twin of eyeless (toy) are expressed in the eyes and in the central nervous system (CNS). In addition to the pivotal functions in eye development, previous studies revealed that ey also plays important roles in axonal development of the mushroom bodies, centers for associative learning and memory. It has been reported that a second intron enhancer that contains several Pax-6 binding sites mainly controls the eye-specific expression, but the DNA sequences that control CNS expression are unknown. In this work, we have dissected transcriptional enhancer elements of the ey gene that are required for the CNS expression in various developmental stages. We first show that CNS expression is independent of the eye-specific enhancer of the second intron. By systematic reporter studies, we have identified several discrete DNA elements in the 5' upstream region and in the second intron that cooperatively interact to generate most of the ey expression pattern in the CNS. DNA sequence comparison between the ey genes of distant Drosophila species has identified conserved modules that might be bound by the upstream regulatory factors of the ey gene in CNS development. Furthermore, by RNA interference and mutant studies, we show that ey expression in the brain is independent of the activity of toy and ey itself whereas in the eye primordia it requires both, supporting the notion that ey and toy are regulated by parallel and independent regulatory cascades in brain development.


Assuntos
Encéfalo/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Animais , Encéfalo/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Proteínas do Olho , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Íntrons , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Proteínas Repressoras , Transativadores/genética , Transativadores/metabolismo
5.
PLoS One ; 6(5): e19632, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21589871

RESUMO

BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons.


Assuntos
Axônios , Encéfalo/metabolismo , Dendritos , Proteínas de Drosophila/fisiologia , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Drosophila , Proteínas de Drosophila/genética , Imuno-Histoquímica , Mutação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico
6.
Fly (Austin) ; 3(4): 263-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19901536

RESUMO

The Drosophila Pax6 genes, eyeless (ey) and twin of eyeless (toy), are expressed in both eyes and the brain. Previous studies have demonstrated that ey plays important roles in axonal outgrowth and differentiation of mushroom bodies (MBs), which are centers for associative learning and memory in flies. However, the functional significance of toy in brain development is poorly understood. Here, we describe the expression patterns of TOY, and show that TOY expression partially overlaps with EY expression in the embryonic, larval and adult brains. Mutations of toy perturb brain neuromere formation in the embryonic stages, and result in severe deformation of the MB lobes in pharate adult brains. Moreover, we also analyzed toy functions by gain-of-function experiments, and show that overexpression of toy results in degeneration of MB lobes. Thus, our results demonstrate the importance of toy in embryonic brain patterning as well as in post-embryonic development of the major brain structures such as MBs.


Assuntos
Encéfalo/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Corpos Pedunculados/anormalidades , Mutação/genética , Transativadores/genética , Transativadores/metabolismo , Animais , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Perfilação da Expressão Gênica , Imuno-Histoquímica , Corpos Pedunculados/metabolismo , Interferência de RNA
7.
Nat Neurosci ; 12(12): 1542-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915565

RESUMO

Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.


Assuntos
Dendritos/fisiologia , Proteínas de Drosophila/genética , Drosophila/fisiologia , Gânglios dos Invertebrados/fisiologia , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/fisiologia , Animais , Axônios/fisiologia , Drosophila/embriologia , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Leucina , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutagênese/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Fenótipo , Estrutura Terciária de Proteína , Receptores Pré-Sinápticos/fisiologia
8.
Neuron ; 59(6): 972-85, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18817735

RESUMO

In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Cones de Crescimento/metabolismo , Neurônios Motores/metabolismo , Músculos/inervação , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Axônios/metabolismo , Movimento Celular/fisiologia , Bases de Dados de Proteínas , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Larva/metabolismo , Leucina , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Neurológicos , Neurônios Motores/citologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/análise , Sequências Repetitivas de Aminoácidos
9.
Development ; 129(2): 409-19, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11807033

RESUMO

Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the arthropod brain. In order to understand the cellular and genetic processes that control the early development of MBs, we have performed high-resolution neuroanatomical studies of the embryonic and post-embryonic development of the Drosophila MBs. In the mid to late embryonic stages, the pioneer MB tracts extend along Fasciclin II (FAS II)-expressing cells to form the primordia for the peduncle and the medial lobe. As development proceeds, the axonal projections of the larval MBs are organized in layers surrounding a characteristic core, which harbors bundles of actin filaments. Mosaic analyses reveal sequential generation of the MB layers, in which newly produced Kenyon cells project into the core to shift to more distal layers as they undergo further differentiation. Whereas the initial extension of the embryonic MB tracts is intact, loss-of-function mutations of fas II causes abnormal formation of the larval lobes. Mosaic studies demonstrate that FAS II is intrinsically required for the formation of the coherent organization of the internal MB fascicles. Furthermore, we show that ectopic expression of FAS II in the developing MBs results in severe lobe defects, in which internal layers also are disrupted. These results uncover unexpected internal complexity of the larval MBs and demonstrate unique aspects of neural generation and axonal sorting processes during the development of the complex brain centers in the fruit fly brain.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Corpos Pedunculados/embriologia , Corpos Pedunculados/crescimento & desenvolvimento , Animais , Biomarcadores , Moléculas de Adesão Celular Neuronais/genética , Drosophila melanogaster/genética , Genes de Insetos , Genes Reporter , Larva/crescimento & desenvolvimento , Larva/metabolismo , Corpos Pedunculados/citologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA