Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 92: 129387, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37369333

RESUMO

Metallo-ß-lactamases (MBLs) are a group of Zn(II)-dependent enzymes that pose a major threat to global health. They are linked to an increasing number of multi-drug resistant bacterial pathogens, but no clinically useful inhibitor is yet available. Since ß-lactam antibiotics, which are inactivated by MBLs, constitute ∼65% of all antibiotics used to treat infections, the search for clinically relevant MBL inhibitors is urgent. Here, derivatives of a 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (1a) were synthesised and their inhibitory effects assessed against prominent representatives of the MBL family. Several compounds are potent inhibitors of each MBL tested, making them promising candidates for the development of broad-spectrum drug leads. In particular, compound 5f is highly potent across the MBL family, with Ki values in the low µM range. Furthermore, this compound also appears to display synergy in combination with antibiotics such as penicillin G, cefuroxime or meropenem. This molecule thus represents a promising starting point to develop new drugs to inhibit a major mechanism of antibiotic resistance.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Meropeném , Farmacorresistência Bacteriana Múltipla
2.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33215746

RESUMO

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Assuntos
Antituberculosos/farmacologia , Cetol-Ácido Redutoisomerase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Pirimidinonas/farmacologia , Linhagem Celular , Humanos , Cetol-Ácido Redutoisomerase/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , NADP/metabolismo , Staphylococcus aureus/enzimologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
Chemistry ; 26(41): 8958-8968, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32198779

RESUMO

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm. In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 µm. Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Šresolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.


Assuntos
Cetol-Ácido Redutoisomerase/metabolismo , Magnésio/química , Mycobacterium tuberculosis/enzimologia , NADP/química , Staphylococcus aureus/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Cetol-Ácido Redutoisomerase/química , Mycobacterium tuberculosis/química , NADP/metabolismo , Staphylococcus aureus/química
4.
Bioorg Chem ; 105: 104386, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137556

RESUMO

Based on a structure-guided approach, aryl sulfonyl hydrazones conjugated with 1,3-diaryl pyrazoles were designed to target metallo-ß-lactamases (MBLs), using Klebsiella pneumoniaeNDM-1 as a model. The in vitro MBLs inhibition showed remarkable inhibition constant for most of the designed compounds at a low micromolar range (1.5-16.4 µM) against NDM-1, IMP-1 and AIM-1 MBLs. Furthermore, all compounds showed promising antibacterial activity against (K+, K1-K9) resistant clinical isolates of K. pneumoniae and were able to re-sensitize resistant K. pneumoniae (K5) strain towards meropenem and cefalexin. Besides, in vivo toxicity testing exhibited that the most active compound was non-toxic and well tolerated by the experimental animals orally up to 350 mg/kg and up to 125 mg/kg parenterally. The docking experiments on NDM-1 and IMP-1 rationalized the observed in vitro MBLs inhibition activity. Generally, this work presents a fruitful matrix to extend the chemical space for MBLs inhibition. This aids in tackling drug-resistance issues in antibacterial treatment.


Assuntos
Antibacterianos/farmacologia , Hidrazonas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Pirazóis/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Hidrazonas/síntese química , Hidrazonas/química , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/química , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA