Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 177(1): 85-100, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901552

RESUMO

Genetic interactions identify combinations of genetic variants that impinge on phenotype. With whole-genome sequence information available for thousands of individuals within a species, a major outstanding issue concerns the interpretation of allelic combinations of genes underlying inherited traits. In this Review, we discuss how large-scale analyses in model systems have illuminated the general principles and phenotypic impact of genetic interactions. We focus on studies in budding yeast, including the mapping of a global genetic network. We emphasize how information gained from work in yeast translates to other systems, and how a global genetic network not only annotates gene function but also provides new insights into the genotype-to-phenotype relationship.


Assuntos
Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Estudos de Associação Genética/tendências , Alelos , Animais , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genética
2.
Trends Genet ; 38(1): 59-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294428

RESUMO

Gene duplication is a prevalent phenomenon across the tree of life. The processes that lead to the retention of duplicated genes are not well understood. Functional genomics approaches in model organisms, such as yeast, provide useful tools to test the mechanisms underlying retention with functional redundancy and divergence of duplicated genes, including fates associated with neofunctionalization, subfunctionalization, back-up compensation, and dosage amplification. Duplicated genes may also be retained as a consequence of structural and functional entanglement. Advances in human gene editing have enabled the interrogation of duplicated genes in the human genome, providing new tools to evaluate the relative contributions of each of these factors to duplicate gene retention and the evolution of genome structure.


Assuntos
Evolução Molecular , Genes Duplicados , Duplicação Gênica , Genes Duplicados/genética , Humanos , Saccharomyces cerevisiae/genética
3.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717409

RESUMO

In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.


Assuntos
Cariótipo , Humanos , Animais , Evolução Molecular , Modelos Genéticos , Neoplasias/genética , Evolução Biológica
4.
Neuroimage ; 264: 119671, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209794

RESUMO

Neurotransmitter receptors modulate signaling between neurons. Thus, neurotransmitter receptors and transporters play a key role in shaping brain function. Due to the lack of comprehensive neurotransmitter receptor/transporter density datasets, microarray gene expression measuring mRNA transcripts is often used as a proxy for receptor densities. In the present report, we comprehensively test the spatial correlation between gene expression and protein density for a total of 27 neurotransmitter receptors, receptor binding-sites, and transporters across 9 different neurotransmitter systems, using both PET and autoradiography radioligand-based imaging modalities. We find poor spatial correspondences between gene expression and density for all neurotransmitter receptors and transporters except four single-protein metabotropic receptors (5-HT1A, CB1, D2, and MOR). These expression-density associations are related to gene differential stability and can vary between cortical and subcortical structures. Altogether, we recommend using direct measures of receptor and transporter density when relating neurotransmitter systems to brain structure and function.


Assuntos
Encéfalo , Receptores de Neurotransmissores , Humanos , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Autorradiografia , Neurotransmissores/metabolismo , Proteínas de Transporte/metabolismo , Expressão Gênica
6.
Nucleic Acids Res ; 41(Web Server issue): W591-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677617

RESUMO

Screening genome-wide sets of mutants for fitness defects provides a simple but powerful approach for exploring gene function, mapping genetic networks and probing mechanisms of drug action. For yeast and other microorganisms with global mutant collections, genetic or chemical-genetic interactions can be effectively quantified by growing an ordered array of strains on agar plates as individual colonies, and then scoring the colony size changes in response to a genetic or environmental perturbation. To do so, requires efficient tools for the extraction and analysis of quantitative data. Here, we describe SGAtools (http://sgatools.ccbr.utoronto.ca), a web-based analysis system for designer genetic screens. SGAtools outlines a series of guided steps that allow the user to quantify colony sizes from images of agar plates, correct for systematic biases in the observations and calculate a fitness score relative to a control experiment. The data can also be visualized online to explore the colony sizes on individual plates, view the distribution of resulting scores, highlight genes with the strongest signal and perform Gene Ontology enrichment analysis.


Assuntos
Deleção de Genes , Análise em Microsséries , Software , Gráficos por Computador , Aptidão Genética , Processamento de Imagem Assistida por Computador , Internet , Leveduras/genética , Leveduras/crescimento & desenvolvimento
7.
Cell Genom ; 4(1): 100470, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38216282

RESUMO

In a recent Cell Genomics article, Tsouris et al.1 analyze the transcriptomes of a large diallel panel of hybrids from Saccharomyces cerevisiae natural isolates to study cis- and trans-regulatory changes underlying gene expression variation. Vanessa Pereira and Elena Kuzmin discuss the authors' findings and the wider context in missing heritability research in this preview.


Assuntos
Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética
8.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517886

RESUMO

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Animais , Camundongos , Cromossomos Humanos Par 4/genética , Proliferação de Células/genética , Aberrações Cromossômicas , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045359

RESUMO

Gene duplication is common across the tree of life, including yeast and humans, and contributes to genomic robustness. In this study, we examined changes in the subcellular localization and abundance of proteins in response to the deletion of their paralogs originating from the whole-genome duplication event, which is a largely unexplored mechanism of functional divergence. We performed a systematic single-cell imaging analysis of protein dynamics and screened subcellular redistribution of proteins, capturing their localization and abundance changes, providing insight into forces determining paralog retention. Paralogs showed dependency, whereby proteins required their paralog to maintain their native abundance or localization, more often than compensation. Network feature analysis suggested the importance of functional redundancy and rewiring of protein and genetic interactions underlying redistribution response of paralogs. Translation of non-canonical protein isoform emerged as a novel compensatory mechanism. This study provides new insights into paralog retention and evolutionary forces that shape genomes.

10.
Nat Commun ; 13(1): 3812, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780247

RESUMO

Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.


Assuntos
Endossomos , Proteínas Associadas aos Microtúbulos , Autofagia/fisiologia , Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas SNARE/metabolismo
11.
Methods Mol Biol ; 2212: 377-400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33733368

RESUMO

Complex genetic interactions occur when mutant alleles of multiple genes combine to elicit an unexpected phenotype, which could not be predicted given the expectation based on the combination of phenotypes associated with individual mutant alleles. Trigenic Synthetic Genetic Array (τ-SGA) methodology was developed for the systematic analysis of complex interactions involving combinations of three gene perturbations. With a series of replica pinning steps of the τ-SGA procedure, haploid triple mutants are constructed through automated mating and meiotic recombination. For example, a double-mutant query strain carrying two mutant alleles of interest, such as a deletion allele of a nonessential gene and a conditional temperature-sensitive allele of an essential gene, is crossed to an input array of yeast mutants, such as the diagnostic array set of ~1200 mutants, to generate an output array of triple mutants. The colony-size measurements of the resulting triple mutants are used to estimate cellular fitness and quantify trigenic interactions by incorporating corresponding single- and double-mutant fitness estimates. Trigenic interaction networks can be further analyzed for functional modules using various clustering and enrichment analysis tools. Complex genetic interactions are rich in functional information and provide insight into the genotype-to-phenotype relationship, genome size, and speciation.


Assuntos
Epistasia Genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genes Fúngicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Alelos , Genes Essenciais , Genes Sintéticos , Genótipo , Haploidia , Mutação , Fenótipo , Saccharomyces cerevisiae/metabolismo
12.
Nat Protoc ; 16(2): 1219-1250, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462440

RESUMO

Systematic complex genetic interaction studies have provided insight into high-order functional redundancies and genetic network wiring of the cell. Here, we describe a method for screening and quantifying trigenic interactions from ordered arrays of yeast strains grown on agar plates as individual colonies. The protocol instructs users on the trigenic synthetic genetic array analysis technique, τ-SGA, for high-throughput screens. The steps describe construction of the double-mutant query strains and the corresponding single-mutant control query strains, which are screened in parallel in two replicates. The screening experimental set-up consists of sequential replica-pinning steps that enable automated mating, meiotic recombination and successive haploid selection steps for the generation of triple mutants, which are scored for colony size as a proxy for fitness, which enables the calculation of trigenic interactions. The procedure described here was used to conduct 422 trigenic interaction screens, which generated ~460,000 yeast triple mutants for trigenic interaction analysis. Users should be familiar with robotic equipment required for high-throughput genetic interaction screens and be proficient at the command line to execute the scoring pipeline. Large-scale screen computational analysis is achieved by using MATLAB pipelines that score raw colony size data to produce τ-SGA interaction scores. Additional recommendations are included for optimizing experimental design and analysis of smaller-scale trigenic interaction screens by using a web-based analysis system, SGAtools. This protocol provides a resource for those who would like to gain a deeper, more practical understanding of trigenic interaction screening and quantification methodology.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leveduras/genética , Alelos , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Técnicas Genéticas , Testes Genéticos/métodos , Haploidia , Meiose/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética
13.
Methods Mol Biol ; 2381: 285-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590283

RESUMO

Cancer can develop from an accumulation of alterations, some of which cause a nonmalignant cell to transform to a malignant state exhibiting increased rate of cell growth and evasion of growth suppressive mechanisms, eventually leading to tissue invasion and metastatic disease. Triple-negative breast cancers (TNBC) are heterogeneous and are clinically characterized by the lack of expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), which limits its treatment options. Since tumor evolution is driven by diverse cancer cell populations and their microenvironment, it is imperative to map TNBC at single-cell resolution. Here, we describe an experimental procedure for isolating a single-cell suspension from a TNBC patient-derived xenograft, subjecting it to single-cell RNA sequencing using droplet-based technology from 10× Genomics and analyzing the transcriptomic data at single-cell resolution to obtain inferred copy number aberration profiles, using scCNA. Data obtained using this single-cell RNA sequencing experimental and analytical methodology should enhance our understanding of intratumor heterogeneity which is key for identifying genetic vulnerabilities and developing effective therapies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genômica , Xenoenxertos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
14.
Science ; 368(6498)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586993

RESUMO

Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.


Assuntos
Duplicação Gênica , Genes Duplicados , Genoma Fúngico , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Deleção de Genes , Redes Reguladoras de Genes , Técnicas Genéticas , Proteínas de Membrana/genética , Peroxinas/genética
15.
Clin Sci (Lond) ; 117(5): 191-200, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19175358

RESUMO

rIPC (remote ischaemic preconditioning) is a phenomenon whereby short periods of ischaemia and reperfusion of a tissue or organ (e.g. mesentery, kidney) can protect a distant tissue or organ (e.g. heart) against subsequent, potentially lethal, ischaemia. We, and others, have shown that transient limb ischaemia can provide potent myocardial protection experimentally and clinically during cardiac surgery. Nonetheless, our understanding of the signal transduction from remote stimulus to local effect remains incomplete. The aim of the present study was to define the humoral nature of rIPC effector(s) from limb ischaemia and to study their local effects in isolated heart and cardiomyocyte models. Using a Langendorff preparation, we show that infarct size after coronary artery ligation and reperfusion was substantially reduced by rIPC in vivo, this stimulus up-regulating the MAPKs (mitogen-activating protein kinases) p42/p44, and inducing PKCepsilon (protein kinase Cepsilon) subcellular redistribution. Pre-treatment with the plasma and dialysate of plasma (obtained using 15 kDa cut-off dialysis membrane) from donor rabbits subjected to rIPC similarly protected against infarction. The effectiveness of the rIPC dialysate was abrogated by passage through a C18 hydrophobic column, but eluate from this column provided the same level of protection. The dialysate of rIPC plasma from rabbits and humans was also tested in an isolated fresh cardiomyocyte model of simulated ischaemia and reperfusion. Necrosis in cardiomyocytes treated with rIPC dialysate was substantially reduced compared with control, and was similar to cells pre-treated by 'classical' preconditioning. This effect, by rabbit rIPC dialysate, was blocked by pre-treatment with the opiate receptor blocker naloxone. In conclusion, in vivo transient limb ischaemia releases a low-molecular-mass (<15 kDa) hydrophobic circulating factor(s) which induce(s) a potent protection against myocardial ischaemia/reperfusion injury in Langendorff-perfused hearts and isolated cardiomyocytes in the same species. This cardioprotection is transferable across species, independent of local neurogenic activity, and requires opioid receptor activation.


Assuntos
Sangue , Membro Posterior/irrigação sanguínea , Isquemia , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Soluções para Diálise/farmacologia , Humanos , Ligadura , Músculo Esquelético/irrigação sanguínea , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Reperfusão Miocárdica , Miocárdio , Miócitos Cardíacos/patologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Coelhos , Distribuição Aleatória , Receptores Opioides/efeitos dos fármacos
16.
Nat Commun ; 10(1): 144, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635553

RESUMO

Understanding how forces orchestrate tissue formation requires technologies to map internal tissue stress at cellular length scales. Here, we develop ultrasoft mechanosensors that visibly deform under less than 10 Pascals of cell-generated stress. By incorporating these mechanosensors into multicellular spheroids, we capture the patterns of internal stress that arise during spheroid formation. We experimentally demonstrate the spontaneous generation of a tensional 'skin', only a few cell layers thick, at the spheroid surface, which correlates with activation of mechanobiological signalling pathways, and balances a compressive stress profile within the tissue. These stresses develop through cell-driven mechanical compaction at the tissue periphery, and suggest that the tissue formation process plays a critically important role in specifying mechanobiological function. The broad applicability of this technique should ultimately provide a quantitative basis to design tissues that leverage the mechanical activity of constituent cells to evolve towards a desired form and function.


Assuntos
Hidrogéis/química , Microfluídica , Esferoides Celulares/fisiologia , Estresse Mecânico , Técnicas de Cultura de Células , Proliferação de Células , Humanos , Engenharia Tecidual , Células Tumorais Cultivadas
17.
Cell Rep ; 22(12): 3191-3205, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562176

RESUMO

Triple-negative breast cancers (TNBCs) display a complex spectrum of mutations and chromosomal aberrations. Chromosome 5q (5q) loss is detected in up to 70% of TNBCs, but little is known regarding the genetic drivers associated with this event. Here, we show somatic deletion of a region syntenic with human 5q33.2-35.3 in a mouse model of TNBC. Mechanistically, we identify KIBRA as a major factor contributing to the effects of 5q loss on tumor growth and metastatic progression. Re-expression of KIBRA impairs metastasis in vivo and inhibits tumorsphere formation by TNBC cells in vitro. KIBRA functions co-operatively with the protein tyrosine phosphatase PTPN14 to trigger mechanotransduction-regulated signals that inhibit the nuclear localization of oncogenic transcriptional co-activators YAP/TAZ. Our results argue that the selective advantage produced by 5q loss involves reduced dosage of KIBRA, promoting oncogenic functioning of YAP/TAZ in TNBC.


Assuntos
Anemia Macrocítica/genética , Genes Supressores de Tumor , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Experimentais/genética , Fosfoproteínas/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Modelos Animais de Doenças , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Metástase Neoplásica , Fosfoproteínas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Science ; 360(6386)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674565

RESUMO

To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and essential genes were hubs on the trigenic network. Despite their functional enrichment, trigenic interactions tended to link genes in distant bioprocesses and displayed a weaker magnitude than digenic interactions. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance, including the genotype-to-phenotype relationship.


Assuntos
Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
19.
Cold Spring Harb Protoc ; 2016(4): pdb.prot088807, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037072

RESUMO

Genetic interaction studies have been used to characterize unknown genes, assign membership in pathway and complex, and build a comprehensive functional map of a eukaryotic cell. Synthetic genetic array (SGA) methodology automates yeast genetic analysis and enables systematic mapping of genetic interactions. In its simplest form, SGA consists of a series of replica pinning steps that enable construction of haploid double mutants through automated mating and meiotic recombination. Using this method, a strain carrying a query mutation, such as a deletion allele of a nonessential gene or a conditional temperature-sensitive allele of an essential gene, can be crossed to an input array of yeast mutants, such as the complete set of approximately 5000 viable deletion mutants. The resulting output array of double mutants can be scored for genetic interactions based on estimates of cellular fitness derived from colony-size measurements. The SGA score method can be used to analyze large-scale data sets, whereas small-scale data sets can be analyzed using SGAtools, a simple web-based interface that includes all the necessary analysis steps for quantifying genetic interactions.


Assuntos
Automação Laboratorial/métodos , Análise Mutacional de DNA , Redes Reguladoras de Genes , Biologia Molecular/métodos , Anotação de Sequência Molecular , Saccharomyces cerevisiae/genética , Cruzamentos Genéticos , Fenótipo , Recombinação Genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Cold Spring Harb Protoc ; 2016(4): pdb.top086652, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037078

RESUMO

Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype.


Assuntos
Automação Laboratorial/métodos , Análise Mutacional de DNA , Redes Reguladoras de Genes , Biologia Molecular/métodos , Anotação de Sequência Molecular , Saccharomyces cerevisiae/genética , Animais , Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Schizosaccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA