Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 305, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361124

RESUMO

BACKGROUND: Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS: AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS: Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION: Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.


Assuntos
Apoptose , Cromonas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Camundongos Nus , Xenoenxertos , Proteômica , Linhagem Celular Tumoral , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células
2.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964062

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.

3.
Ecotoxicol Environ Saf ; 202: 110896, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622306

RESUMO

Exposure to fine particulate matter (PM) comprising toxic compounds arising from air pollution is a major human health concern. It is linked to increased mortality and incidence of various lung diseases. However, the mechanisms underlying the toxic effects of PM on lung fibroblasts have not been fully explored. We used targeted quantitative metabolomics and lipidomics analysis along with cytotoxicity studies to comprehensively characterize the alterations in the metabolite profiles of human lung fibroblasts (HEL 299) upon exposure to PM2.5 and PM10. This exposure at 50 µg/mL for 72 h induced an abnormally high apoptotic response via triggering intracellular reactive oxygen species (ROS) production and mitochondrial dysfunction through an imbalance between pro- and anti-apoptotic signaling pathways. The cytotoxic effects of PM2.5 were more severe than those of PM10. Metabolomics and lipidomics analyses revealed that PM exposure triggered substantial changes in the cellular metabolite profile, which involved reduced mitochondria-related metabolites such as tricarboxylic acid (TCA) cycle intermediates, amino acids, and free fatty acids as well as increased lysoglycerophospholipids (LPLs) containing polyunsaturated fatty acids. The decrease in mitochondria-related metabolites suggested that PM exposure led to reduced TCA cycle capacity and energy production. Apoptotic and inflammatory responses as well as mitochondrial dysfunction were likely to be accelerated because of excessive accumulation of LPLs, contributing to the disruption of membrane rafts and Ca2+ homeostasis and causing increased mitochondrial ROS formation. These results provide valuable insights regarding the toxic effects of PM exposure. Our study also provides a new direction for research on PM exposure-related health disorders using different cell lines.


Assuntos
Poluentes Atmosféricos/toxicidade , Fibroblastos/fisiologia , Material Particulado/toxicidade , Fosfolipídeos/metabolismo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Apoptose , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Homeostase , Humanos , Lipidômica , Pulmão/efeitos dos fármacos , Pneumopatias , Metabolômica , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Ecotoxicol Environ Saf ; 192: 110254, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007746

RESUMO

The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.


Assuntos
Fenantrenos/metabolismo , Fosfolipídeos/metabolismo , Sphingomonadaceae/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Lipidômica , Metabolômica , Naftalenos/metabolismo , Naftóis/metabolismo , Fosfolipídeos/química , Ácido Salicílico/metabolismo , Sphingomonadaceae/isolamento & purificação
5.
Artigo em Inglês | MEDLINE | ID: mdl-32693679

RESUMO

Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.


Assuntos
Compostos de Benzalcônio/toxicidade , Oryzias/metabolismo , Proteoma/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Ecotoxicologia , Eletroforese em Gel Bidimensional , Dose Letal Mediana , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Bull Environ Contam Toxicol ; 105(4): 656-664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32865632

RESUMO

Methiozolin is a novel herbicide for controlling annual bluegrass. After applying 14C labelled methiozolin in two sediment (clay loam and sand)-water systems under aerobic conditions, its distribution, half-life, and metabolites within 300 days were investigated. The mass balance ranged within 92.0%-104.4% of applied radioactivity (AR). Radioactivity in the water declined sharply from 94.4% to 0.5% AR, while in the sediment it increased to 83.9% AR at 14 days before declining to 9.1% AR. The volatiles were minimal (< 0.5% AR), and the evolved labelled CO2 accounted for up to ~ 33.4% AR. From Radio-HPLC analysis, labelled methiozolin in water decreased from 108.9% to 0% AR, while a maximum of 15.1% AR remained in the sediment at the end. Eight metabolites were detected, all at minor levels and accounting for < 5.5% AR. The half-life of labelled methiozolin in the total sediment-water systems were 50.7 and 38.7 days for clay loam and sand, respectively.


Assuntos
Herbicidas/análise , Isoxazóis/análise , Tiofenos/análise , Cromatografia Líquida de Alta Pressão , Argila , Meia-Vida , Herbicidas/metabolismo , Poa , Água
7.
Proteomics ; 16(1): 122-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26460066

RESUMO

Plant growth-promoting rhizobacteria (PGPR) facilitate the plant growth and enhance their induced systemic resistance (ISR) against a variety of environmental stresses. In this study, we carried out integrative analyses on the proteome, transcriptome, and metabolome to investigate Arabidopsis root and shoot responses to the well-known PGPR strain Paenibacillus polymyxa (P. polymyxa) E681. Shoot fresh and root dry weights were increased, whereas root length was decreased by treatment with P. polymyxa E681. 2DE approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 41 (17 spots in root, 24 spots in shoot) that were differentially expressed in response to P. polymyxa E681. Biological process- and molecular function-based bioinformatics analysis resulted in their classification into seven different protein groups. Of these, 36 proteins including amino acid metabolism, antioxidant, defense and stress response, photosynthesis, and plant hormone-related proteins were up-regulated, whereas five proteins including three carbohydrate metabolism- and one amino acid metabolism-related, and one unknown protein were down-regulated, respectively. A good correlation was observed between protein and transcript abundances for the 12 differentially expressed proteins during interactions as determined by qPCR analysis. Metabolite analysis using LC-MS/MS revealed highly increased levels of tryptophan, indole-3-acetonitrile (IAN), indole-3-acetic acid (IAA), and camalexin in the treated plants. Arabidopsis plant inoculated P. polymyxa E681 also showed resistance to Botrytis cinerea infection. Taken together these results suggest that P. polymyxa E681 may promote plant growth by induced metabolism and activation of defense-related proteins against fungal pathogen.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Paenibacillus/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genômica , Metabolômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Brotos de Planta/fisiologia , Proteômica , Simbiose , Transcriptoma
8.
Nucleic Acids Res ; 40(18): 9182-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22826500

RESUMO

Transcriptional repression of pathogen defense-related genes is essential for plant growth and development. Several proteins are known to be involved in the transcriptional regulation of plant defense responses. However, mechanisms by which expression of defense-related genes are regulated by repressor proteins are poorly characterized. Here, we describe the in planta function of CBNAC, a calmodulin-regulated NAC transcriptional repressor in Arabidopsis. A T-DNA insertional mutant (cbnac1) displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae DC3000 (PstDC3000), whereas resistance was reduced in transgenic CBNAC overexpression lines. The observed changes in disease resistance were correlated with alterations in pathogenesis-related protein 1 (PR1) gene expression. CBNAC bound directly to the PR1 promoter. SNI1 (suppressor of nonexpressor of PR genes1, inducible 1) was identified as a CBNAC-binding protein. Basal resistance to PstDC3000 and derepression of PR1 expression was greater in the cbnac1 sni1 double mutant than in either cbnac1 or sni1 mutants. SNI1 enhanced binding of CBNAC to its cognate PR1 promoter element. CBNAC and SNI1 are hypothesized to work as repressor proteins in the cooperative suppression of plant basal defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/genética , Proteínas Repressoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Pseudomonas syringae , RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Ácido Salicílico
9.
Environ Sci Pollut Res Int ; 30(10): 26375-26386, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367642

RESUMO

Benzyl benzoate (BB) is widely used in the food, cosmetics, agriculture, and pharmaceutical industries and is discharged into the aquatic environment via various water sources, including wastewater. Research on the bioaccumulation and possible toxicity of BB has been conducted, but the biochemical responses to BB toxicity are not fully understood, and the specific molecular pathways by which BB causes toxicity remain unknown. In this study, label-free quantitative proteomics based on mass spectrometry was applied to investigate protein profiles in zebrafish (Danio rerio) embryos exposed to BB (1 µg/mL) for 7 days. A total of 83 differentially expressed proteins (DEPs) were identified, including 49 up-regulated and 34 down-regulated proteins. The biological functions of proteins regulated by BB were grouped into functional categories and subcategories, including the biosynthesis of organonitrogen compound biosynthetic process, translation, amide biosynthetic process, lipid transport, stress response, and cytoskeletal activity. The results provide novel insight into the molecular basis of the ecotoxicity of BB in aquatic ecosystems.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteômica/métodos , Ecossistema , Proteínas de Peixe-Zebra , Embrião não Mamífero/metabolismo , Poluentes Químicos da Água/análise
10.
Biochem Biophys Res Commun ; 422(1): 181-6, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22575450

RESUMO

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Tolerância ao Sal , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Serina/genética , Serina/metabolismo , Fatores de Transcrição/genética
11.
J Agric Food Chem ; 69(33): 9536-9544, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34293861

RESUMO

Methiozolin is a novel herbicide used to control annual bluegrass. It has low vapor pressure and high hydrophobicity, which could result in persistence in water and bioaccumulation. We measured the bioconcentration factors (BCFs) of methiozolin in ricefish (Oryzias latipes). Two radiolabels were used to quantify the parent compound and identify its metabolites. Ricefish were exposed to 2.0 and 20.0 ng/L methiozolin for 28 days in the uptake phase with a 96-h LC50 of 2.2 mg/L(95% confidence limit: 2.1-2.5 mg/L) and water solubility of 4.2 mg/L after 48 h was observed. On the basis of total radioactivity residues (TRRs), BCFss and BCFk values of 797.0-851.9 and 992.9-1077.4 were observed, respectively, while BCFss values for methiozolin were 251.9-257.5. Several minor metabolites with TRR < 3.4% were detected. Among them, 4-(2,6-difluorobenzyloxy-methyl)-3-hydroxy-3-methyl-1-(3-methylthiophen-2-yl)butan-1-one, 2,6-difluorobenzyl alcohol, and 4,5-dihydro-5-methyl-3-(3-methylthiophen-2-yl)isoxazol-5-yl)methanol were identified. Methiozolin is metabolized into numerous minor metabolites with potentially low bioaccumulation capacity in ricefish. These findings can facilitate risk assessments regarding methiozolin use, particularly its movements and final stages in aquatic environments.


Assuntos
Herbicidas , Oryzias , Poluentes Químicos da Água , Animais , Bioacumulação , Isoxazóis , Tiofenos
12.
Planta ; 232(6): 1355-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20820802

RESUMO

Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bacillus subtilis/metabolismo , Proteoma , Compostos Orgânicos Voláteis/metabolismo , Antioxidantes/metabolismo , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Clorofila/metabolismo , Primers do DNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Plant Pathol J ; 36(2): 185-191, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32296298

RESUMO

Streptomyces griseus S4-7, a well-characterized keystone taxon among strawberry microbial communities, shows exceptional disease-preventing ability. The whole-genome sequence, functional genes, and bioactive secondary metabolites of the strain have been described in previous studies. However, proteomics studies of not only the S4-7 strain, but also the Streptomyces genus as a whole, remain limited to date. Therefore, in the present study, we created a proteomics reference map for S. griseus S4-7. Additionally, analysis of differentially expressed proteins was performed against a wblE2 mutant, which was deficient in spore chain development and did not express an antifungal activity-regulatory transcription factor. We believe that our data provide a foundation for further in-depth studies of functional keystone taxa of the phytobiome and elucidation of the mechanisms underlying plant-microbe interactions, es-pecially those involving the Streptomyces genus.

14.
Environ Pollut ; 265(Pt B): 114362, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806436

RESUMO

This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 µg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 µg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17ß-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.


Assuntos
Ácidos Ftálicos , Peixe-Zebra , Animais , Conexinas , Dietilexilftalato/análogos & derivados , Sistema Endócrino , Feminino , Masculino , Proteínas de Peixe-Zebra
15.
Plant Pathol J ; 35(6): 609-622, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832041

RESUMO

Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.

16.
J Agric Food Chem ; 67(49): 13534-13543, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718169

RESUMO

The fate of methiozolin under anaerobic conditions was investigated in clay loam with a high organic carbon content and sandy loam with a low carbon content using [dihydroisoxazole ring-14C] and [phenyl-14C] radiolabels. The sediment/water ratio was 1:3 based on the dry weight:volume (w/v) ratio; the incubations lasted up to 355 days after the treatment (DAT) and were performed in the dark at 20.4 ± 0.7 °C. The overlying water flow-through systems consisted of glass vessels containing sediment with traps for [14C]carbon dioxide and [14C]volatiles. The samples were collected and analyzed at 0, 3, 7, 14, 50, 100, 200, and 355 DAT. The water and sediment samples were extracted with solvent systems, centrifuged, concentrated, and analyzed by liquid scintillation counting and a high-performance liquid chromatography (HPLC) system equipped with a flow scintillation analyzer. Following extraction, the sediments were air-dried, and the subsamples were combusted. [14C]Methiozolin was degraded in the water phase and partitioned rapidly into the sediments, where it was further degraded to other metabolites, which were identified by HPLC and liquid chromatography- or gas chromatography-tandem mass spectrometry (MS/MS) with authentic standards. The dissipation of methiozolin from the overlying water was rapid (with half-lives of 1.1-1.8 and 3.6-4.9 days in the clay loam and sandy loam, respectively). However, methiozolin dissipation from the sediment phase and the whole system was much slower than from the water phase (with half-lives of 122.0-220.0 and 110.0-130.0 days in the sediment phase of the clay loam and sandy loam and 116.0-166.0 and 70.8-85.7 days in the whole system of the clay loam and sandy loam, respectively).


Assuntos
Radioisótopos de Carbono/análise , Sedimentos Geológicos/química , Isoxazóis/química , Tiofenos/química , Anaerobiose , Cromatografia Líquida de Alta Pressão , Argila/química , Cromatografia Gasosa-Espectrometria de Massas
17.
Fungal Biol ; 122(11): 1098-1108, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30342625

RESUMO

Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt), is one of the most serious root diseases in wheat production. In this study, a proteomic platform based on 2-dimensional gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Tandem Mass Spectrometry (MALDI-TOF/TOF MS) was used to construct the first proteome database reference map of G. graminis var. tritici and to identify the response of the pathogen to 2,4-diacetylphloroglucinol (DAPG), which is a natural antibiotic produced by antagonistic Pseudomonas spp. in take-all suppressive soils. For mapping, a total of 240 spots was identified that represented 209 different proteins. The most abundant biological function categories in the Ggt proteome were related to carbohydrate metabolism (21%), amino acid metabolism (15%), protein folding and degradation (12%), translation (11%), and stress response (10%). In total, 51 Ggt proteins were affected by DAPG treatment. Based on gene ontology, carbohydrate metabolism, amino acid metabolism, stress response, and protein folding and degradation proteins were the ones most modulated by DAPG treatment. This study provides the first extensive proteomic reference map constructed for Ggt and represents the first time that the response of Ggt to DAPG has been characterized at the proteomic level.


Assuntos
Ascomicetos/efeitos dos fármacos , Proteínas Fúngicas/química , Fungicidas Industriais/farmacologia , Floroglucinol/análogos & derivados , Proteoma/química , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/metabolismo , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Doenças das Plantas/microbiologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triticum/microbiologia
18.
Mycobiology ; 45(3): 226-231, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29138630

RESUMO

Coprinopsis cinerea was employed to investigate the fungal response to gravity. Mycelium growth revealed a consistent growth pattern, irrespective of the direction of gravity (i.e., horizontal vs. perpendicular). However, the fruiting body grew in the direction opposite to that of gravity once the primordia had formed. For the proteomic analysis, only curved-stem samples were used. Fifty-one proteins were identified and classified into 13 groups according to function. The major functional groups were hydrolases and transferases (16%), signal transduction (15%), oxidoreductases and isomerases (11%), carbohydrate metabolism (9%), and transport (5%). To the best of our knowledge, this is the first report on a proteomic approach to evaluate the molecular response of C. cinerea to gravity.

19.
Microbiologyopen ; 6(5)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28523731

RESUMO

Streptomyces griseus S4-7 was originally isolated from the strawberry rhizosphere as a microbial agent responsible for Fusarium wilt suppressive soils. S. griseus S4-7 shows specific and pronounced antifungal activity against Fusarium oxysporum f. sp. fragariae. In the Streptomyces genus, the whi transcription factors are regulators of sporulation, cell differentiation, septation, and secondary metabolites production. wblE2 function as a regulator has emerged as a new group in whi transcription factors. In this study, we reveal the involvement of the wblE2 transcription factor in the plant-protection by S. griseus S4-7. We generated ΔwblE, ΔwblE2, ΔwhiH, and ΔwhmD gene knock-out mutants, which showed less antifungal activity both in vitro and in planta. Among the mutants, wblE2 mutant failed to protect the strawberry against the Fusarium wilt pathogen. Transcriptome analyses revealed major differences in the regulation of phenylalanine metabolism, polyketide and siderophore biosynthesis between the S4-7 and the wblE2 mutant. The results contribute to our understanding of the role of streptomycetes wblE2 genes in a natural disease suppressing system.


Assuntos
Antibiose , Proteínas de Bactérias , Doenças das Plantas/microbiologia , Plantas/microbiologia , Streptomyces griseus/genética , Streptomyces griseus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Anti-Infecciosos/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Resistência à Doença , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Bacteriano , Mutação , Fenótipo , Raízes de Plantas/microbiologia , Plasmídeos/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/ultraestrutura , Transcriptoma
20.
Sci Rep ; 6: 33370, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27665921

RESUMO

Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA