Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Cell ; 153(4): 797-811, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663779

RESUMO

All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.


Assuntos
Drosophila/imunologia , Drosophila/microbiologia , Imunidade nas Mucosas , Pectobacterium carotovorum/fisiologia , Simbiose , Uracila/metabolismo , Animais , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Homeostase , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
2.
Cancer Sci ; 115(6): 2036-2048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613358

RESUMO

Triple-negative breast cancer (TNBC) patients harboring wild-type breast cancer susceptibility gene 1 (BRCA1) account for most TNBC patients but lack adequate targeted therapeutic options. Although radiotherapy (RT) is the primary treatment modality for TNBC patients, radioresistance is one of the major challenges. RT-induced increase in cathepsin S (CTSS) causes radioresistance through suppressing BRCA1-mediated apoptosis of tumor cells, which was induced by CTSS-mediated degradation of BRCA1. Targeting CTSS may provide a novel therapeutic opportunity for TNBC patients. Publicly available data and human tissue microarray slides were analyzed to investigate the relationship between CTSS and BRCA1 in breast cancer patients. A CTSS enzyme assay and in silico docking analysis were conducted to identify a novel CTSS inhibitor. RO5461111 was used first to confirm the concept of targeting CTSS for radiosensitizing effects. The MDA-MB-231 TNBC cell line was used for in vitro and in vivo assays. Western blotting, promoter assay, cell death assay, clonogenic survival assay, and immunohistochemistry staining were conducted to evaluate novel CTSS inhibitors. CTSS inhibitors were further evaluated for their additional benefit of inhibiting cell migration. A novel CTSS inhibitor, TS-24, increased BRCA1 protein levels and showed radiosensitization in TNBC cells with wild-type BRCA1 and in vivo in a TNBC xenograft mouse model. These effects were attributed by BRCA1-mediated apoptosis facilitated by TS-24. Furthermore, TS-24 demonstrated the additional effect of inhibiting cell migration. Our study suggests that employing CTSS inhibitors for the functional restoration of BRCA1 to enhance RT-induced apoptosis may provide a novel therapeutic opportunity for TNBC patients harboring wild-type BRCA1.


Assuntos
Apoptose , Proteína BRCA1 , Radiossensibilizantes , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Tolerância a Radiação/efeitos dos fármacos
3.
EMBO Rep ; 23(8): e52977, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35695065

RESUMO

Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers despite a relatively low incidence. Angiogenesis, one of the hallmarks of cancer, is essential for the pathogenesis of EOC, which is related to the induction of angiogenic factors. We found that ELF3 was highly expressed in EOCs under hypoxia and functioned as a transcription factor for IGF1. The ELF3-mediated increase in the secretion of IGF1 and VEGF promoted endothelial cell proliferation, migration, and EOC angiogenesis. Although this situation was much exaggerated under hypoxia, ELF3 silencing under hypoxia significantly attenuated angiogenic activity in endothelial cells by reducing the expression and secretion of IGF1 and VEGF. ELF3 silencing attenuated angiogenesis and tumorigenesis in ex vivo and xenograft mouse models. Consequently, ELF3 plays an important role in the induction of angiogenesis and tumorigenesis in EOC as a transcription factor of IGF1. A detailed understanding of the biological mechanism of ELF3 may both improve current antiangiogenic therapies and have anticancer effects for EOC.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Animais , Carcinogênese/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Feminino , Humanos , Hipóxia , Fator de Crescimento Insulin-Like I/genética , Camundongos , Neovascularização Patológica/patologia , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Receptor IGF Tipo 1/genética , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/genética
4.
Bioorg Med Chem ; 91: 117403, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418826

RESUMO

Topoisomerases are key molecular enzymes responsible for altering DNA topology, thus they have long been considered as attractive targets for novel chemotherapeutic agents. Topoisomerase type II (Topo II) catalytic inhibitors embrace a fresh perspective meant to get beyond drawbacks caused by topo II poisons, such as cardiotoxicity and secondary malignancies. Based on previously reported 5H-indeno[1,2-b]pyridines, here we presented new twenty-three hybrid di-indenopyridines along with their topo I/IIα inhibitory and antiproliferative activity. Most of the prepared 11-phenyl-diindenopyridines showed negligible topo I inhibitory activity, showing selectivity over topo II. Among the series, we finally selected compound 17, which displayed 100 % topo IIα inhibition at 20 µM concentration and comparable antiproliferative activity against the tested cell lines. Through competitive EtBr displacement assay, cleavable complex assay, and comet assay, compound 17 was finally determined as a non-intercalative catalytic topo IIα inhibitor. The findings in this study highlight the significance of phenolic, halophenyl, thienyl, and furyl groups at the 4-position of the indane ring in the design and synthesis of di-indenopyridines as potent catalytic topo IIα inhibitors with remarkable anticancer effects.


Assuntos
Antineoplásicos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Inibidores da Topoisomerase II , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células
5.
Bioorg Chem ; 130: 106260, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410114

RESUMO

Expression of heat shock protein (HSP) correlates with the oncogenic status of malignant cells and plays an important role in tumorigenesis. HSP27 is constitutively expressed at specific stages of cancer development, and several clinical trials have reported correlations between HSP27 expression and tumor progression, metastasis, and chemoresistance in various types of cancer cells. These findings indicate that HSP27 is a major drug target, particularly in chemo-resistant cancers. As part of our ongoing efforts to improve the previously identified J2, a HSP27 cross-linker, we, in this study, report the identification of NK16 as a novel inducer of abnormal HSP27 dimers that did not affect the expression of HSP90 in an NCI-H460 lung cancer cell model. When NCI-H460 cells were treated with NK16 in combination with the anticancer drug cisplatin or paclitaxel, cleavage of PARP and caspase-3 was increased compared to administration of cisplatin or paclitaxel alone. Similar results were obtained in an NCI-H460-xenografted mouse model, in which tumor growth was suppressed more by co-administration of NK16 and paclitaxel than by paclitaxel alone. We propose NK16 as a meaningful strategy to improve the anticancer efficacy of cisplatin and paclitaxel.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Camundongos , Antineoplásicos/farmacologia , Cisplatino , Modelos Animais de Doenças , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP27 , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacologia
6.
Chemistry ; 28(22): e202200108, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35218108

RESUMO

DNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami. These minicircles are 183 bp in length, constitute six individual single-stranded DNAs that are ligated to realize duplex interlocking, and adopt temporary base pairing of single strands for interlocking. To probe the DNA-protein interactions, restriction reactions were carried out on DNAs with different topologies such as free linear duplex or duplex constrained inside origami and free or topologically-interlocked minicircles. Except the free linear duplex, all tested structures were resistant to restriction digestion, indicating that the topological features of DNA, such as flexibility, curvature, and groove orientation, play a major role in DNA-protein interactions.


Assuntos
Replicação do DNA , DNA Circular , DNA , DNA de Cinetoplasto
7.
Chemistry ; 28(22): e202200839, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35344240

RESUMO

Invited for the cover of this issue are Prof. Takashi Morii and co-workers at Kyoto University and Ewha Womans University. The cover image depicts the graphical design and atomic force microscopic (AFM) images of the synthesized topologically-interlocked DNA catenane and rotaxanes inside a frame-shaped DNA origami. Read the full text of the article at 10.1002/chem.202200108.


Assuntos
DNA , Rotaxanos , Humanos , Microscopia de Força Atômica
8.
Bioorg Med Chem Lett ; 60: 128606, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123005

RESUMO

A new series of fifty-four 2-phenol-4-aryl-6-hydroxyphenylpyridines containing fluorophenyl, trifluoromethylphenyl, and trifluoromethoxy phenyl groups were synthesized and tested for topoisomerase IIα inhibitory and antiproliferative activity against different cancer cell lines in an attempt to look into topoisomerase IIα-targeted prospective anticancer agents to counter the limitations of available treatment options. When compared to positive controls, several compounds 11-12, 37, 50, and 51 showed high antiproliferative activity, while several 4-fluorophenyl substituted compounds 13-14 and 18 showed strong topoisomerase IIα inhibition. Surprisingly, most of the compounds had a significant antiproliferative effect on the HCT15 colorectal adenocarcinoma and T47D breast cancer cell lines. Moreover, compound 12 with para-fluorophenyl at the 4-position and meta-phenolic groups at the 2- and 6-positions inhibited proliferating HeLa cervix adenocarcinoma cells with an IC50 value of 1.28 µM. Based on biological results, the structure-activity relationships of the synthesized derivatives emphasized the significance of 4-trifluoromethoxyphenyl groups for strong antiproliferative activity and 4-fluorophenyl groups for strong topo IIα inhibition. Furthermore, meta- and para-phenolic groups at the 2- and 4-positions are favorable for strong topo IIα inhibitory and antiproliferative activity. The research findings provide insight into the effect of different fluorine functionalities in the discovery of novel topoisomerase IIα-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroxilação , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
9.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056647

RESUMO

Metabolic syndrome is a cluster of metabolic indicators that increase the risk of diabetes and cardiovascular diseases. Visceral obesity and factors derived from altered adipose tissue, adipokines, play critical roles in the development of metabolic syndrome. Although the adipokines leptin and adiponectin improve insulin sensitivity, others contribute to the development of glucose intolerance, including visfatin, fetuin-A, resistin, and plasminogen activator inhibitor-1 (PAI-1). Leptin and adiponectin increase fatty acid oxidation, prevent foam cell formation, and improve lipid metabolism, while visfatin, fetuin-A, PAI-1, and resistin have pro-atherogenic properties. In this review, we briefly summarize the role of various adipokines in the development of metabolic syndrome, focusing on glucose homeostasis and lipid metabolism.


Assuntos
Adipocinas/metabolismo , Síndrome Metabólica/patologia , Animais , Humanos , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo
10.
Bioorg Chem ; 116: 105349, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536927

RESUMO

A series of fluorinated and hydroxylated 2,4-diphenyl indenopyridinols were designed and synthesized using l-proline-catalyzed and microwave-assisted synthetic methods for the development of new anticancer agents. Adriamycin and etoposide were used as reference compounds for the evaluation of topo IIα inhibitory and anti-proliferative activity of the synthesized compounds. Exploring the structure-activity relationships of 36 prepared compounds and biological results, most of the compounds with ortho- and para-fluorophenyl at 4-position of indenopyridinol ring displayed strong topo IIα inhibition. In addition, the majority of the ortho- and meta-fluorophenyl substituted compounds 1-24 displayed strong anti-proliferative activity against DU145 prostate cancer cell line compared to the positive controls. Interestingly, compound 4 possessing ortho-phenolic and ortho-fluorophenyl group at 2- and 4-position, respectively of the central pyridine ring showed high anti-proliferative activity (IC50 = 0.82 µM) against T47D human breast cancer cell line, while para-phenolic and para-fluorophenyl substituted compound 36 exhibited potent topo IIα inhibitory activity with 94.7% and 88.6% inhibition at 100 µM and 20 µM concentration, respectively. A systematic comparison between the results of this study and the previous study indicated that minor changes in the position of functional groups in the structure affect the topo IIα inhibitory activity and anti-proliferative activity of the compounds. The findings from this study will provide valuable information to the researchers working on the medicinal chemistry of topoisomerase IIα-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Indenos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indenos/síntese química , Indenos/química , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
11.
Bioorg Chem ; 111: 104884, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872925

RESUMO

The objective of this study was to discover potential topoisomerase (topo) targeting anticancer agents. Novel series of hydroxylated and halogenated(-F, -Cl, and -CF3) 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols were systematically designed and synthesized by faster, economic, and environmentally friendly l-proline catalyzed and microwave-assisted one pot reaction method. The synthesized compounds were assessed for topo I and IIα inhibitory and anti-proliferative activities. The in vitroevaluation displayed that most of the compounds have selective topo IIα inhibitoryactivity as well as selectivity towards T47D human cancer cell line. Structure-activity relationship study suggested that the introduction of additional hydroxyl functionality at 7-positon of benzofuro[3,2-b]pyridine skeleton is crucial for selective topo IIα inhibitory activity. Placement of phenolic moiety on the 4-position of the tricyclic system imparts better topo IIα inhibitory and anti-proliferative activity.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Hidroxilação , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681904

RESUMO

Castration-resistant prostate cancer (CRPC) is a clinical challenge in treatment because of its aggressive nature and resistance to androgen deprivation therapy. Topoisomerase II catalytic inhibitors have been suggested as a strategy to overcome these issues. We previously reported AK-I-190 as a novel topoisomerase II inhibitor. In this study, the mechanism of AK-I-190 was clarified using various types of spectroscopic and biological evaluations. AK-I-190 showed potent topoisomerase II inhibitory activity through intercalating into DNA without stabilizing the DNA-enzyme cleavage complex, resulting in significantly less DNA toxicity than etoposide, a clinically used topoisomerase II poison. AK-I-190 induced G1 arrest and effectively inhibited cell proliferation and colony formation in combination with paclitaxel in an androgen receptor-negative CRPC cell line. Our results confirmed that topoisomerase II catalytic inhibition inhibited proliferation and induced apoptosis of AR-independently growing prostate cancer cells. These findings indicate the clinical relevance of topoisomerase II catalytic inhibitors in androgen receptor-negative prostate cancer.


Assuntos
Androgênios/deficiência , Apoptose , Proliferação de Células , DNA Topoisomerases Tipo II/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Ciclo Celular , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/patologia , Células Tumorais Cultivadas
13.
Bioorg Chem ; 84: 347-354, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530076

RESUMO

Human DNA topoisomerases (topos) have been recognized as a good target molecule for the development of anticancer drugs because they play an important role in solving DNA topological problems caused by DNA strand separation during replication and transcription. In this study, we designed and synthesized 11 novel chromone backbone compounds possessing epoxy and halohydrin substituents with chirality. In the topos inhibition test, compounds 2, 9, 10, and 11 showed comparable topo I inhibitory activity at concentration of 100 µM compared to camptothecin, and all of the synthesized compounds showed moderate topo IIα inhibitory activity. Among them, compounds 9, 10 and 11 were more potent than the others in both topo I and IIα inhibitory activity. Compound 11 showed the most potent cell antiproliferative activity against all tested cancer cell lines with particularly strong inhibition (an IC50 of 0.04 µM) of K562 myelogenous leukemia cancer cell proliferation. In the brief structure-activity relationship analysis, there was no clear correlation between stereochemistry and topos inhibitory and cytotoxic activity. 5(R),7(S)-bisepoxy-substituted compound 11 was the most potent DNA cross-linker and induced G2/M arrest in a cell cycle assay in a dose- and time-dependent manner. After the treatment time period induced apoptosis in K562 cells without increasing G2/M-phase cells. Overall, compound 11 showed good consistent inhibitory biological activity related to cancer cell proliferation.


Assuntos
Antineoplásicos/síntese química , Cromonas/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia
14.
Biochim Biophys Acta Gen Subj ; 1862(5): 1126-1133, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29425806

RESUMO

BACKGROUND: Doxorubicin is commonly using chemotherapeutic agents for breast cancer. However, doxorubicin has limitations in clinical use because of dose-dependent cardiotoxicity and drug resistance. Despite of previously reported studies about mechanisms of doxorubicin resistance including overexpression of P-gp and abnormal expression and mutation of topoisomerase IIα, resistance to this agent still abundantly occur and is regarded as a major obstacle to successful treatment. METHODS: We have established doxorubicin resistant T47D cells. Intracellular calcium and ROS levels and calpain activity were measured using fluorometric experiments. Cell viability assay, cell cycle analysis, immunofluorescence and western blot analysis were performed to evaluate m-calpain specific truncation of topoisomerase IIα and molecular mechanism in doxorubicin resistant cells. RESULTS: We observed that doxorubicin treatment increased intracellular calcium and ROS (Reactive Oxygen Species) in parental and doxorubicin resistant T47D cells. The increases in intracellular calcium and ROS were much greater in doxorubicin resistant T47D cells, which led to higher activity of calpains. Hyperactivated m-calpain, but not µ-calpain, specifically induced cleavage of topoisomerase IIα and accumulation of truncated topoisomerase IIα in the cytoplasm. The increase in cytoplasmic truncated topoisomerase IIα reduced the efficacy of doxorubicin. Doxorubicin resistant T47D cells, with hyperactivated m-calpain and truncated cytosolic topoisomerase IIα, obtained cross-resistance to other topoisomerase II-targeting drugs. CONCLUSION: Hyperactivated m-calpain induced cytoplasmic accumulation of truncated topoisomerase IIα in doxorubicin resistant T47D cells. GENERAL SIGNIFICANCE: These data provide a new mechanism of doxorubicin resistance and suggest a novel strategy for overcoming drug resistance in topoisomerase IIα-targeting therapy.


Assuntos
Neoplasias da Mama/enzimologia , Calpaína/metabolismo , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Sinalização do Cálcio/genética , Calpaína/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Ativação Enzimática , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Bioorg Med Chem Lett ; 28(4): 566-571, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29402741

RESUMO

Human DNA topoisomerases have become attractive targets for developing more effective anticancer drugs. In this study, a series of new benzofuro[3,2-b]pyridin-7-ols were designed and synthesized for the first time and screened for their topoisomerase I and II inhibitory and antiproliferative activity. Structure-activity relationships revealed the position of ortho- and para-hydroxyl group at 2-phenyl ring, and meta-hydroxyl group at 4-phenyl ring of benzofuro[3,2-b]pyridin-7-ol are important for potent and selective topo II inhibitory activity. Compound 11 showed the most selective and potent topo II inhibition (100% inhibition at 100 µM) and strongest antiproliferative activity (IC50 = 0.86 µM) than all the positive controls in HeLa cell line.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Humanos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
16.
Bioorg Med Chem ; 26(18): 5212-5223, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262132

RESUMO

DNA Topoisomerase IIα (topo IIα) is one of the most effective therapeutic targets to control cancer. In an effort to develop novel and effective topo IIα targeting anti-proliferative agent, a phenolic series of indenopyridinone and indenopyridinol were designed and prepared using efficient multi-component one pot synthetic method. Total twenty-two synthesized compounds were assessed for topo I and IIα inhibition, and anti-proliferation in three different human cancer cell lines. Overall structure-activity relationship study explored the significance of meta-phenolic group at 4-position and para-phenolic group at 2- and/or 4-position of indenopyridinone skeleton for strong topo IIα-selective inhibition and anti-proliferative activity against human cervix (HeLa) and colorectal (HCT15) cell lines. Compound 12 with excellent topo IIα inhibition (93.7%) was confirmed as a DNA intercalator that could be a new promising lead to develop effective topo IIα-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Indenos/farmacologia , Fenóis/farmacologia , Piridonas/farmacologia , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Indenos/síntese química , Indenos/química , Estrutura Molecular , Fenóis/química , Piridonas/síntese química , Piridonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
17.
Bioorg Med Chem ; 26(18): 5181-5193, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253887

RESUMO

A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20 µM concentrations the compound 48 exhibited 1.25 times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100 µM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π-π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π-π stacking interactions and there were no hydrogen bond interactions with topo IIα.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Naftiridinas/farmacologia , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/química , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
18.
Bioorg Med Chem ; 26(8): 1909-1919, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510948

RESUMO

As part of our effort to develop potential topoisomerase IIα (topo IIα) targeting anticancer agents, we systematically designed a new series of hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines. Total eighteen compounds were synthesized and tested for their ability to inhibit the function of topo I and IIα, and proliferation of human breast (T47D), colorectal (HCT15), and cervix (HeLa) cancer cells. Except compound 11, all of the tested compounds displayed selective topo IIα inhibitory activity. Compounds 8-18, 22, 24, and 25 showed excellent topo IIα inhibitory activity than a positive control, etoposide. Most of the compounds appeared to be superior to reference compounds in their antiproliferative activity. Structure-activity relationship (SAR) study has shown that it is better to place the hydroxyphenyl group at the 4-position of the central pyridine for superior topo IIα inhibition and antiproliferative activity. Similarly, the 3'-, or 4'-hydroxyphenyl substitution at the 2- and 4-positon of pyridine ring is important for better activity than 2'-substitution.


Assuntos
Antineoplásicos/síntese química , DNA Topoisomerases Tipo II/metabolismo , Piridinas/química , Inibidores da Topoisomerase II/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzopiranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , Células HeLa , Humanos , Ligação Proteica , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia
19.
Bioorg Chem ; 79: 1-18, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29715635

RESUMO

Human DNA topoisomerases (Topos) are essential nuclear enzyme whose level of expression is potential indicator for prediction of responsive result of chemotherapy. Topos has become a key cellular target for most of the anticancer agents that regulates topological problems of DNA during cellular metabolic processes such as replication, transcription, and recombination. Inspired by previous studies of 2,4,6-trisubstituted pyridines to find out safer and effective topoisomerase targeted anticancer agent, twenty-seven 2-phenol-4,6-dichlorophenyl-pyridines were designed, synthesized, and tested for their topo I and IIα inhibitory and anti-proliferative activity. Most of the dichlorinated meta- and para-phenolic series compounds (1-18) exhibited potent and selective topo IIα inhibition along with significant anti-proliferative activity in the HCT-15 and T47D cell lines compared to the positive control, etoposide. Interestingly, dichlorinated ortho-phenolic series compounds (19-27) exhibited potent and dual topo inhibition but very weak anti-proliferative activity in the tested cancer cell lines. Structure-activity relationship with previously synthesized compounds revealed the importance of chlorine moiety to improve the potency of topo inhibitory activity. Further mechanistic study confirmed that compounds 2 and 12 acted as non-intercalative specific topo IIα catalytic inhibitor with less DNA damage, and induced G1 arrest and apoptosis in HCT-15 and T47D cell lines, respectively.


Assuntos
Antineoplásicos/farmacologia , Fenóis/farmacologia , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
20.
Bioorg Med Chem Lett ; 27(15): 3279-3283, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633898

RESUMO

A new series of 2-chloropheny-substituted benzofuro[3,2-b]pyridines were designed, synthesized, and evaluated for topoisomerase I and II inhibition and antiproliferative activity. Compounds 17-19, 23, 24, 26, and 27 exhibited excellent topo II inhibitory activity. A systematic structure-activity relationship study revealed the important role of chlorine substitution in the strong topoisomerase inhibitory activity.


Assuntos
Benzofuranos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Piridinas/farmacologia , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Piridinas/síntese química , Piridinas/química , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA