Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008627

RESUMO

CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel's properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6-97.0%) and surface areas (270-744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g-1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30%AEROPIL.


Assuntos
Dióxido de Carbono/química , Géis/química , Líquidos Iônicos/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Glutaral/química , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Espectrofotometria Infravermelho
2.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114452

RESUMO

Solid lipid microparticles (SLMPs) are attractive carriers as delivery systems as they are stable, easy to manufacture and can provide controlled release of bioactive agents and increase their efficacy and/or safety. Particles from Gas-Saturated Solutions (PGSS®) technique is a solvent-free technology to produce SLMPs, which involves the use of supercritical CO2 (scCO2) at mild pressures and temperatures for the melting of lipids and atomization into particles. The determination of the key processing variables is crucial in PGSS® technique to obtain reliable and reproducible microparticles, therefore the modelling of SLMPs production process and variables control are of great interest to obtain quality therapeutic systems. In this work, the melting point depression of a commercial lipid (glyceryl monostearate, GMS) under compressed CO2 was studied using view cell experiments. Based on an unconstrained D-optimal design for three variables (nozzle diameter, temperature and pressure), SLMPs were produced using the PGSS® technique. The yield of production was registered and the particles characterized in terms of particle size distribution. Variable modeling was carried out using artificial neural networks and fuzzy logic integrated into neurofuzzy software. Modeling results highlight the main effect of temperature to tune the mean diameter SLMPs, whereas the pressure-nozzle diameter interaction is the main responsible in the SLMPs size distribution and in the PGSS® production yield.


Assuntos
Dióxido de Carbono/química , Portadores de Fármacos/química , Glicerídeos/química , Microesferas , Modelos Químicos , Tamanho da Partícula , Pressão , Solubilidade , Solventes/química , Tecnologia Farmacêutica , Temperatura
3.
Molecules ; 24(6)2019 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-30884869

RESUMO

Processing and shaping of dried gels are of interest in several fields like alginate aerogel beads used as highly porous and nanostructured particles in biomedical applications. The physicochemical properties of the alginate source, the solvent used in the gelation solution and the gel drying method are key parameters influencing the characteristics of the resulting dried gels. In this work, dried gel beads in the form of xerogels, cryogels or aerogels were prepared from alginates of different molecular weights (120 and 180 kDa) and concentrations (1.25, 1.50, 2.0 and 2.25% (w/v)) using different gelation conditions (aqueous and ethanolic CaCl2 solutions) and drying methods (supercritical drying, freeze-drying and oven drying) to obtain particles with a broad range of physicochemical and textural properties. The stability of physicochemical properties of alginate aerogels under storage conditions of 25 °C and 65% relative humidity (ICH-climatic zone II) during 1 and 3 months was studied. Results showed significant effects of the studied processing parameters on the resulting alginate dried gel properties. Stability studies showed small variations in aerogels weight and specific surface area after 3 months of storage, especially, in the case of aerogels produced with medium molecular weight alginate.


Assuntos
Alginatos/química , Criogéis/química , Portadores de Fármacos/química , Géis/química , Composição de Medicamentos , Liofilização , Géis/síntese química , Humanos , Peso Molecular , Nanoestruturas/química , Porosidade
4.
Nanoscale ; 16(19): 9525-9535, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38656329

RESUMO

Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye-dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye-dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier-drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels.

5.
Macromol Biosci ; 23(12): e2300256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37551821

RESUMO

Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.


Assuntos
Portadores de Fármacos , Polímeros , Nanogéis , Proteínas , Sistemas de Liberação de Medicamentos/métodos
6.
Gels ; 8(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877502

RESUMO

Chronic wounds are physical traumas that significantly impair the quality of life of over 40 million patients worldwide. Aerogels are nanostructured dry porous materials that can act as carriers for the local delivery of bioactive compounds at the wound site. However, aerogels are usually obtained with low drug loading yields and poor particle size reproducibility and urges the implementation of novel and high-performance processing strategies. In this work, alginate aerogel particles loaded with vancomycin, an antibiotic used for the treatment of Staphylococcus aureus infections, were obtained through aerogel technology combined with gel inkjet printing and water-repellent surfaces. Alginate aerogel particles showed high porosity, large surface area, a well-defined spherical shape and a reproducible size (609 ± 37 µm). Aerogel formulation with vancomycin loadings of up to 33.01 ± 0.47 µg drug/mg of particle were obtained with sustained-release profiles from alginate aerogels for more than 7 days (PBS pH 7.4 medium). Overall, this novel green aerogel processing strategy allowed us to obtain nanostructured drug delivery systems with improved drug loading yields that can enhance the current antibacterial treatments for chronic wounds.

7.
Sci Total Environ ; 826: 154089, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35218842

RESUMO

The outbreak of COVID-19 pandemic unveiled an unprecedented scarcity of personal protective equipment (PPE) available in sanitary premises and for the population worldwide. This situation fostered the development of new strategies to reuse PPE that would ensure sterility and, simultaneously, preserve the filtering properties of the materials. In addition, the reuse of PPEs by reprocessing could reduce the environmental impact of the massive single-use and disposal of these materials. Conventional sterilization techniques such as steam or dry heat, ethylene oxide, and gamma irradiation may alter the functional properties of the PPEs and/or leave toxic residues. Supercritical CO2 (scCO2)-based sterilization is herein proposed as a safe, sustainable, and rapid sterilization method for contaminated face masks while preserving their performance. The functional (bacterial filtration efficiency, breathability, splash resistance, straps elasticity) properties of the processed FFP3 face masks were evaluated after 1 and 10 cycles of sterilization. Log-6 sterilization reduction levels were obtained for face masks contaminated with Bacillus pumilus endospores at mild operating conditions (CO2 at 39 °C and 100 bar for 30 min) and with low contents of H2O2 (150 ppm). Physicochemical properties of the FFP3 face masks remained unchanged after reprocessing and differences in efficacy were not observed neither in the filtration tests, following UNE-EN 14683, nor in the integrity of FFP3 filtration after the sterilization process. The herein presented method based on scCO2 technology is the first reported protocol achieving the reprocessing of FFP3 masks up to 10 cycles while preserving their functional properties.


Assuntos
COVID-19 , Máscaras , Dióxido de Carbono , Humanos , Peróxido de Hidrogênio , Pandemias/prevenção & controle , SARS-CoV-2 , Esterilização/métodos
8.
Front Bioeng Biotechnol ; 9: 671381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017828

RESUMO

Pulmonary drug delivery has recognized benefits for both local and systemic treatments. Dry powder inhalers (DPIs) are convenient, portable and environmentally friendly devices, becoming an optimal choice for patients. The tailoring of novel formulations for DPIs, namely in the form of porous particles, is stimulating in the pharmaceutical research area to improve delivery efficiency. Suitable powder technological approaches are being sought to design such formulations. Namely, aerogel powders are nanostructured porous particles with particularly attractive properties (large surface area, excellent aerodynamic properties and high fluid uptake capacity) for these purposes. In this review, the most recent development on powder technologies used for the processing of particulate porous carriers are described via updated examples and critically discussed. A special focus will be devoted to the most recent advances and uses of aerogel technology to obtain porous particles with advanced performance in pulmonary delivery.

9.
Polymers (Basel) ; 12(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013071

RESUMO

Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels in the form of microparticles are of special interest for wound treatment and can also be loaded with bioactive agents to improve the healing process. However, the production of the precursor gel may be limited by the viscosity of the polysaccharide initial solution. The jet cutting technique is regarded as a suitable processing technique to overcome this problem. In this work, the technological combination of jet cutting and supercritical drying of gels was assessed to produce chitosan aerogel microparticles loaded with vancomycin HCl (antimicrobial agent) for wound healing purposes. The resulting aerogel formulation was evaluated in terms of morphology, textural properties, drug loading, and release profile. Aerogels were also tested for wound application in terms of exudate sorption capacity, antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, the microparticles had excellent textural properties, absorbed high amounts of exudate, and controlled the release of vancomycin HCl, providing sustained antimicrobial activity.

10.
Pharmaceutics ; 12(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932682

RESUMO

The delivery of bioactive agents using active wound dressings for the management of pain and infections offers improved performances in the treatment of wound complications. In this work, solid lipid microparticles (SLMPs) loaded with lidocaine hydrochloride (LID) were processed and the formulation was evaluated regarding its ability to deliver the drug at the wound site and through the skin barrier. The SLMPs of glyceryl monostearate (GMS) were prepared with different LID contents (0, 1, 2, 4, and 10 wt.%) using the solvent-free and one-step PGSS (Particles from Gas-Saturated Solutions) technique. PGSS exploits the use of supercritical CO2 (scCO2) as a plasticizer for lipids and as pressurizing agent for the atomization of particles. The SLMPs were characterized in terms of shape, size, and morphology (SEM), physicochemical properties (ATR-IR, XRD), and drug content and release behavior. An in vitro test for the evaluation of the influence of the wound environment on the LID release rate from SLMPs was studied using different bioengineered human skin substitutes obtained by 3D-bioprinting. Finally, the antimicrobial activity of the SLMPs was evaluated against three relevant bacteria in wound infections (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). SLMPs processed with 10 wt.% of LID showed a remarkable performance to provide effective doses for pain relief and preventive infection effects.

11.
Carbohydr Polym ; 204: 223-231, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366534

RESUMO

Chronic wounds are a prevailing cause of decreased quality of life, being microbial burden a factor hindering the normal wound healing process. Aerogels are nanostructured materials with large surface area (>250 m2/g) and high porosity (>96%). In this work, vancomycin-loaded chitosan aerogel beads were tested as a potential formulation to treat and prevent infections at the wound site. Processing of chitosan in the form of aerogels endowed this polysaccharide with enhanced water sorption capacity and air permeability. The morphological and textural properties of the particles were studied by image and N2 adsorption-desorption analysis and scanning electron microscopy. Vancomycin content and release profiles from aerogel carriers showed a fast drug release that permitted to efficiently achieve local therapeutic levels. Cell studies with fibroblasts and antimicrobial tests against S. aureus showed that the vancomycin-loaded aerogel particles were cytocompatible and effective in preventing high bacterial loads at the wound site.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Portadores de Fármacos/química , Hidrogéis/química , Vancomicina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Linhagem Celular , Quitosana/toxicidade , Colagenases/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Hidrogéis/toxicidade , Camundongos , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Vancomicina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA