RESUMO
PURPOSE: We report what we believe is the first application of robotically constrained image-guided surgery to approach a fistulous micro-arteriovenous malformation in a highly eloquent location. Drawing on institutional experience with a supervisory-control robotic system, a series of steps were devised to deliver a tubular retractor system to a deeply situated micro-arteriovenous malformation. The surgical footprint of this procedure was minimised along with the neurological morbidity. We hope that our contribution will be of assistance to others in integrating such systems given a similar clinical problem. CLINICAL PRESENTATION: A right-handed 9-year old girl presented to her local emergency department after a sudden onset of severe headache accompanied by vomiting. An intracranial haemorrhage centred in the right centrum semiovale with intraventricular extension was evident and she was transferred urgently to the regional paediatric neurosurgical centre, where an external ventricular drain (EVD) was sited. A digital subtraction angiogram demonstrated a small right hemispheric arteriovenous shunt irrigated by peripheral branches of the middle cerebral artery & a robotically facilitated parafasicular microsurgical approach was performed to disconnect the arteriovenous malformation. CONCLUSION: We describe the successful microsurgical in-situ disconnection of a deeply-situated, fistulous micro-AVM via a port system itself delivered directly to the target with a supervisory-control robotic system. This minimised the surgical disturbance along a relatively long white matter trajectory and demonstrates the feasibility of this approach for deeply located arteriovenous fistulae or fistulous AVMs.