Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.008
Filtrar
1.
Cell ; 184(9): 2362-2371.e9, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33735608

RESUMO

The 501Y.V2 variants of SARS-CoV-2 containing multiple mutations in spike are now dominant in South Africa and are rapidly spreading to other countries. Here, experiments with 18 pseudotyped viruses showed that the 501Y.V2 variants do not confer increased infectivity in multiple cell types except for murine ACE2-overexpressing cells, where a substantial increase in infectivity was observed. Notably, the susceptibility of the 501Y.V2 variants to 12 of 17 neutralizing monoclonal antibodies was substantially diminished, and the neutralization ability of the sera from convalescent patients and immunized mice was also reduced for these variants. The neutralization resistance was mainly caused by E484K and N501Y mutations in the receptor-binding domain of spike. The enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of spillover of the 501Y.V2 variants to mice. Moreover, the neutralization resistance we detected for the 501Y.V2 variants suggests the potential for compromised efficacy of monoclonal antibodies and vaccines.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mutação/genética , SARS-CoV-2/genética
2.
Cell ; 176(6): 1447-1460.e14, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799039

RESUMO

The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.


Assuntos
DNA/imunologia , Nucleotidiltransferases/metabolismo , Tolerância a Antígenos Próprios/imunologia , Acetilação , Sequência de Aminoácidos , Animais , Aspirina/farmacologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linhagem Celular , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Células THP-1
3.
Nat Immunol ; 20(1): 18-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510222

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso/metabolismo , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Catequina/análogos & derivados , Catequina/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosol/imunologia , Citosol/metabolismo , DNA/imunologia , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/genética
4.
Nature ; 622(7981): 112-119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704727

RESUMO

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Assuntos
Proteômica , Sinapses , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Adulto Jovem , Cognição/fisiologia , Espinhas Dendríticas , Idade Gestacional , Macaca , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Especificidade da Espécie , Sinapses/metabolismo , Sinapses/fisiologia
5.
Nature ; 602(7898): 657-663, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016194

RESUMO

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/classificação , Anticorpos Antivirais/classificação , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células Cultivadas , Convalescença , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Humanos , Soros Imunes/imunologia , Modelos Moleculares , Mutação , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Nature ; 612(7940): 534-539, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477528

RESUMO

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Assuntos
Plasmodium falciparum , Esporozoítos , Animais , Humanos , Camundongos , Culicidae/parasitologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/biossíntese , Vacinas Antimaláricas/química , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/patogenicidade , Hepatócitos/parasitologia , Fígado/parasitologia , Proteína 1 de Superfície de Merozoito , Eritrócitos/parasitologia , Técnicas In Vitro
7.
Mol Cell ; 79(4): 689-701.e10, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32610038

RESUMO

Meiotic recombination proceeds via binding of RPA, RAD51, and DMC1 to single-stranded DNA (ssDNA) substrates created after formation of programmed DNA double-strand breaks. Here we report high-resolution in vivo maps of RPA and RAD51 in meiosis, mapping their binding locations and lifespans to individual homologous chromosomes using a genetically engineered hybrid mouse. Together with high-resolution microscopy and DMC1 binding maps, we show that DMC1 and RAD51 have distinct spatial localization on ssDNA: DMC1 binds near the break site, and RAD51 binds away from it. We characterize inter-homolog recombination intermediates bound by RPA in vivo, with properties expected for the critical displacement loop (D-loop) intermediates. These data support the hypothesis that DMC1, not RAD51, performs strand exchange in mammalian meiosis. RPA-bound D-loops can be resolved as crossovers or non-crossovers, but crossover-destined D-loops may have longer lifespans. D-loops resemble crossover gene conversions in size, but their extent is similar in both repair pathways.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga , Meiose , Proteínas de Ligação a Fosfato/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromossomos/genética , Cromossomos/metabolismo , Troca Genética , DNA de Cadeia Simples/metabolismo , Genoma , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas de Ligação a Fosfato/genética , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Testículo
8.
Nature ; 599(7886): 616-621, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759322

RESUMO

The origin and early dispersal of speakers of Transeurasian languages-that is, Japanese, Korean, Tungusic, Mongolic and Turkic-is among the most disputed issues of Eurasian population history1-3. A key problem is the relationship between linguistic dispersals, agricultural expansions and population movements4,5. Here we address this question by 'triangulating' genetics, archaeology and linguistics in a unified perspective. We report wide-ranging datasets from these disciplines, including a comprehensive Transeurasian agropastoral and basic vocabulary; an archaeological database of 255 Neolithic-Bronze Age sites from Northeast Asia; and a collection of ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan, complementing previously published genomes from East Asia. Challenging the traditional 'pastoralist hypothesis'6-8, we show that the common ancestry and primary dispersals of Transeurasian languages can be traced back to the first farmers moving across Northeast Asia from the Early Neolithic onwards, but that this shared heritage has been masked by extensive cultural interaction since the Bronze Age. As well as marking considerable progress in the three individual disciplines, by combining their converging evidence we show that the early spread of Transeurasian speakers was driven by agriculture.


Assuntos
Agricultura/história , Arqueologia , Genética Populacional , Migração Humana/história , Idioma/história , Linguística , China , Conjuntos de Dados como Assunto , Mapeamento Geográfico , História Antiga , Humanos , Japão , Coreia (Geográfico) , Mongólia
9.
Proc Natl Acad Sci U S A ; 121(4): e2315401121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232280

RESUMO

Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.


Assuntos
Quadruplex G , Cinética , Física
10.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882667

RESUMO

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Assuntos
Cartilagem Articular , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Células-Tronco , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Condrogênese/genética
11.
Nature ; 582(7812): 426-431, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461690

RESUMO

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Regiões Pseudoautossômicas/genética , Regiões Pseudoautossômicas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Pareamento Cromossômico/genética , Proteínas de Ligação a DNA , Feminino , Heterocromatina/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Cinética , Masculino , Meiose/genética , Camundongos , Repetições Minissatélites/genética , Oócitos/metabolismo , Recombinação Genética/genética , Caracteres Sexuais , Troca de Cromátide Irmã , Espermatócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Nature ; 581(7809): 401-405, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461649

RESUMO

Plasmonics enables the manipulation of light beyond the optical diffraction limit1-4 and may therefore confer advantages in applications such as photonic devices5-7, optical cloaking8,9, biochemical sensing10,11 and super-resolution imaging12,13. However, the essential field-confinement capability of plasmonic devices is always accompanied by a parasitic Ohmic loss, which severely reduces their performance. Therefore, plasmonic materials (those with collective oscillations of electrons) with a lower loss than noble metals have long been sought14-16. Here we present stable sodium-based plasmonic devices with state-of-the-art performance at near-infrared wavelengths. We fabricated high-quality sodium films with electron relaxation times as long as 0.42 picoseconds using a thermo-assisted spin-coating process. A direct-waveguide experiment shows that the propagation length of surface plasmon polaritons supported at the sodium-quartz interface can reach 200 micrometres at near-infrared wavelengths. We further demonstrate a room-temperature sodium-based plasmonic nanolaser with a lasing threshold of 140 kilowatts per square centimetre, lower than values previously reported for plasmonic nanolasers at near-infrared wavelengths. These sodium-based plasmonic devices show stable performance under ambient conditions over a period of several months after packaging with epoxy. These results indicate that the performance of plasmonic devices can be greatly improved beyond that of devices using noble metals, with implications for applications in plasmonics, nanophotonics and metamaterials.

13.
Proc Natl Acad Sci U S A ; 120(47): e2310951120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976262

RESUMO

Meiotic DNA double-strand breaks (DSBs) initiate homologous recombination and are crucial for ensuring proper chromosome segregation. In mice, ANKRD31 recently emerged as a regulator of DSB timing, number, and location, with a particularly important role in targeting DSBs to the pseudoautosomal regions (PARs) of sex chromosomes. ANKRD31 interacts with multiple proteins, including the conserved and essential DSB-promoting factor REC114, so it was hypothesized to be a modular scaffold that "anchors" other proteins together and to meiotic chromosomes. To determine whether and why the REC114 interaction is important for ANKRD31 function, we generated mice with Ankrd31 mutations that either reduced (missense mutation) or eliminated (C-terminal truncation) the ANKRD31-REC114 interaction without diminishing contacts with other known partners. A complete lack of the ANKRD31-REC114 interaction mimicked an Ankrd31 null, with delayed DSB formation and recombination, defects in DSB repair, and altered DSB locations including failure to target DSBs to the PARs. In contrast, when the ANKRD31-REC114 interaction was substantially but not completely disrupted, spermatocytes again showed delayed DSB formation globally, but recombination and repair were hardly affected and DSB locations were similar to control mice. The missense Ankrd31 allele showed a dosage effect, wherein combining it with the null or C-terminal truncation allele resulted in intermediate phenotypes for DSB formation, recombination, and DSB locations. Our results show that ANKRD31 function is critically dependent on its interaction with REC114 and that defects in ANKRD31 activity correlate with the severity of the disruption of the interaction.


Assuntos
Cromossomos , Recombinação Homóloga , Animais , Masculino , Camundongos , Recombinação Homóloga/genética , Meiose/genética , Mutação , Espermatogênese/genética
14.
EMBO J ; 40(21): e107915, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34585770

RESUMO

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Assuntos
Proteínas de Membrana/genética , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Sinapses/efeitos dos fármacos , Animais , Regulação da Expressão Gênica , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Fosfatidilserinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato , Proteína Vermelha Fluorescente
15.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005773

RESUMO

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Cartilagem Hialina/citologia , Regeneração , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese , Fibroblastos/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Cartilagem Hialina/metabolismo , Cartilagem Hialina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
16.
EMBO Rep ; 24(11): e56958, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37721527

RESUMO

Impaired branched-chain amino acid (BCAA) catabolism has recently been implicated in the development of mechanical pain, but the underlying molecular mechanisms are unclear. Here, we report that defective BCAA catabolism in dorsal root ganglion (DRG) neurons sensitizes mice to mechanical pain by increasing lactate production and expression of the mechanotransduction channel Piezo2. In high-fat diet-fed obese mice, we observed the downregulation of PP2Cm, a key regulator of the BCAA catabolic pathway, in DRG neurons. Mice with conditional knockout of PP2Cm in DRG neurons exhibit mechanical allodynia under normal or SNI-induced neuropathic injury conditions. Furthermore, the VAS scores in the plasma of patients with peripheral neuropathic pain are positively correlated with BCAA contents. Mechanistically, defective BCAA catabolism in DRG neurons promotes lactate production through glycolysis, which increases H3K18la modification and drives Piezo2 expression. Inhibition of lactate production or Piezo2 silencing attenuates the pain phenotype of knockout mice in response to mechanical stimuli. Therefore, our study demonstrates a causal role of defective BCAA catabolism in mechanical pain by enhancing metabolite-mediated epigenetic regulation.


Assuntos
Gânglios Espinais , Mecanotransdução Celular , Humanos , Camundongos , Animais , Gânglios Espinais/metabolismo , Epigênese Genética , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos Knockout , Dor/genética , Lactatos/metabolismo
17.
Mol Cell ; 68(1): 185-197.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28943315

RESUMO

Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.


Assuntos
Inflamassomos/genética , Macrófagos/imunologia , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Choque Séptico/genética , Sequência de Aminoácidos , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/imunologia , Escherichia coli/química , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamassomos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fosforilação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Choque Séptico/induzido quimicamente , Choque Séptico/mortalidade , Choque Séptico/patologia , Transdução de Sinais , Análise de Sobrevida
18.
Drug Resist Updat ; 72: 101019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984225

RESUMO

This report expands on our previous research, highlighting a unique inverse correlation between MYC expression in tumor cells and immune cells during the development of EGFR-TKI resistance. It is observed that MYC expression and fatty acid oxidation (FAO) metabolism in tissue-resident memory (TRM) CD8 + T cells are significantly impaired. These findings offer new insights into the mechanisms of TKI resistance. Although the study is preliminary, it suggests caution when interpreting the effectiveness of MYC inhibitors in reversing TKI resistance, especially when immune factors are not considered.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Ácidos Graxos/uso terapêutico , Mutação
19.
Drug Resist Updat ; 76: 101112, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924997

RESUMO

AIMS: Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood. METHODS: The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates. RESULTS: Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane. CONCLUSIONS: Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.

20.
PLoS Genet ; 18(4): e1010138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404932

RESUMO

The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.


Assuntos
Autofagia , Mitocôndrias , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Encéfalo/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Homeostase/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA