Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1963): 20211522, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814750

RESUMO

Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners-a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.


Assuntos
Evolução Biológica , Myxococcus xanthus , Genótipo , Myxococcus xanthus/genética
2.
Development ; 143(16): 2907-19, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27385008

RESUMO

Tissue homeostasis relies on the ability of tissues to respond to stress. Tissue regeneration and tumour models in Drosophila have shown that c-Jun amino-terminal kinase (JNK) acts as a prominent stress-response pathway promoting injury-induced apoptosis and compensatory proliferation. A central question remaining unanswered is how both responses are balanced by activation of a single pathway. Signalling through the Janus kinase/Signal transducers and activators of transcription (JAK/STAT) pathway, which is a potential JNK target, is implicated in promoting compensatory proliferation. While we observe JAK/STAT activation in imaginal discs upon damage, our data demonstrate that JAK/STAT and its downstream effector Zfh2 promote the survival of JNK signalling cells. The JNK component fos and the pro-apoptotic gene hid are regulated in a JAK/STAT-dependent manner. This molecular pathway restrains JNK-induced apoptosis and spatial propagation of JNK signalling, thereby limiting the extent of tissue damage, as well as facilitating systemic and proliferative responses to injury. We find that the pro-survival function of JAK/STAT also drives tumour growth under conditions of chronic stress. Our study defines the function of JAK/STAT in tissue stress and illustrates how crosstalk between conserved signalling pathways establishes an intricate equilibrium between proliferation, apoptosis and survival to restore tissue homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Commun Biol ; 5(1): 977, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114258

RESUMO

Ecological causes of developmental evolution, for example from predation, remain much investigated, but the potential importance of latent phenotypes in eco-evo-devo has received little attention. Using the predatory bacterium Myxococcus xanthus, which undergoes aggregative fruiting body development upon starvation, we tested whether adaptation to distinct growth environments that do not induce development latently alters developmental phenotypes under starvation conditions that do induce development. In an evolution experiment named MyxoEE-3, growing M. xanthus populations swarmed across agar surfaces while adapting to conditions varying at factors such as surface stiffness or prey identity. Such ecological variation during growth was found to greatly impact the latent evolution of development, including fruiting body morphology, the degree of morphological trait correlation, reaction norms, degrees of developmental plasticity and stochastic diversification. For example, some prey environments promoted retention of developmental proficiency whereas others led to its systematic loss. Our results have implications for understanding evolutionary interactions among predation, development and motility in myxobacterial life cycles, and, more broadly, how ecology can profoundly shape the evolution of developmental systems latently rather than by direct selection on developmental features.


Assuntos
Myxococcus xanthus , Comportamento Predatório , Ágar , Animais , Myxococcus xanthus/genética , Fenótipo
4.
Nat Commun ; 13(1): 107, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013237

RESUMO

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Classe II de Fosfatidilinositol 3-Quinases/genética , Diabetes Mellitus Tipo 2/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Longevidade/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/efeitos dos fármacos , Metilação , Camundongos , Papaverina/farmacologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
5.
Environ Res ; 111(6): 765-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21741637

RESUMO

Insight into the mechanisms by which ambient air particulate matter mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating an association between PM(10) exposure and increased morbidity and mortality. In vitro studies of the effects of air pollution on human cells help to establish conditions for the analysis of cause-effect relationships. One of the major challenges is to test native atmosphere in its complexity, rather than the various components individually. We have developed an in vitro system in which human monocyte-macrophage U937 cells are directly exposed to filters containing different amounts of PM(10) collected in the city of Rome. Transcriptional profiling obtained after short exposure (1h) of cells to a filter containing 1666µg PM(10) (77.6µg/cm(2)) using a macroarray panel of 1176 genes reveals a significant change in the mRNA level (>2 fold) for 87 genes relative to cells exposed to a control filter. Overall, 9 out of 87 modulated genes were annotated as "lung cancer". qRT-PCR confirmed the induction of relevant genes involved in DNA repair and apoptosis, specifically: ERCC1, TDG, DAD1 and MCL1. In cells exposed for 10min, 1h and 3h to different amounts of PM(10), transcription of TNFα and TRAP1, which code for a key pro-inflammatory cytokine and a mitochondrial protein involved in cell protection from oxidative stress, respectively, was shown to be modulated in a time-dependent, but not a dose-dependent manner. Taken together, these data indicate that it is possible to analyze the effects of untreated particulate matter on human cells by the direct-exposure approach we have developed, possibly providing new clues to traffic-related health hazard.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Material Particulado/toxicidade , Transcrição Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Tamanho da Partícula , Cidade de Roma , Fator de Necrose Tumoral alfa/biossíntese
6.
Epigenetics Chromatin ; 11(1): 38, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970137

RESUMO

Unfortunately, the original version of this article contained a typographical error in one of the author names. The name of the author Alexey Pindyurin was incorrectly spelt as Alexey Pinduyrin. The correct spelling is included here and has been updated in the original article.

7.
Epigenetics Chromatin ; 11(1): 27, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871666

RESUMO

BACKGROUND: Tracking dynamic protein-chromatin interactions in vivo is key to unravel transcriptional and epigenetic transitions in development and disease. However, limited availability and heterogeneous tissue composition of in vivo source material impose challenges on many experimental approaches. RESULTS: Here we adapt cell-type-specific DamID-seq profiling for use in Drosophila imaginal discs and make FLP/FRT-based induction accessible to GAL driver-mediated targeting of specific cell lineages. In a proof-of-principle approach, we utilize ubiquitous DamID expression to describe dynamic transitions of Polycomb-binding sites during wing imaginal disc development and in a scrib tumorigenesis model. We identify Atf3 and Ets21C as novel Polycomb target genes involved in scrib tumorigenesis and suggest that target gene regulation by Atf3 and AP-1 transcription factors, as well as modulation of insulator function, plays crucial roles in dynamic Polycomb-binding at target sites. We establish these findings by DamID-seq analysis of wing imaginal disc samples derived from 10 larvae. CONCLUSIONS: Our study opens avenues for robust profiling of small cell population in imaginal discs in vivo and provides insights into epigenetic changes underlying transcriptional responses to tumorigenic transformation.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Drosophila/genética , Drosophila/genética , Discos Imaginais/crescimento & desenvolvimento , Animais , Sítios de Ligação , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Discos Imaginais/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Análise de Sequência de DNA/métodos
8.
Elife ; 72018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29345616

RESUMO

Loss of the sense of smell is among the first signs of natural aging and neurodegenerative diseases such as Alzheimer's and Parkinson's. Cellular and molecular mechanisms promoting this smell loss are not understood. Here, we show that Drosophila melanogaster also loses olfaction before vision with age. Within the olfactory circuit, cholinergic projection neurons show a reduced odor response accompanied by a defect in axonal integrity and reduction in synaptic marker proteins. Using behavioral functional screening, we pinpoint that expression of the mitochondrial reactive oxygen scavenger SOD2 in cholinergic projection neurons is necessary and sufficient to prevent smell degeneration in aging flies. Together, our data suggest that oxidative stress induced axonal degeneration in a single class of neurons drives the functional decline of an entire neural network and the behavior it controls. Given the important role of the cholinergic system in neurodegeneration, the fly olfactory system could be a useful model for the identification of drug targets.


Assuntos
Envelhecimento/patologia , Neurônios Colinérgicos/patologia , Estresse Oxidativo , Animais , Drosophila melanogaster , Modelos Animais , Degeneração Neural/patologia , Bulbo Olfatório/patologia , Superóxido Dismutase/metabolismo
10.
Curr Biol ; 26(5): 563-74, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26853359

RESUMO

Although cellular tumor-suppression mechanisms are widely studied, little is known about mechanisms that act at the level of tissues to suppress the occurrence of aberrant cells in epithelia. We find that ectopic expression of transcription factors that specify cell fates causes abnormal epithelial cysts in Drosophila imaginal discs. Cysts do not form cell autonomously but result from the juxtaposition of two cell populations with divergent fates. Juxtaposition of wild-type and aberrantly specified cells induces enrichment of actomyosin at their entire shared interface, both at adherens junctions as well as along basolateral interfaces. Experimental validation of 3D vertex model simulations demonstrates that enhanced interface contractility is sufficient to explain many morphogenetic behaviors, which depend on cell cluster size. These range from cyst formation by intermediate-sized clusters to segregation of large cell populations by formation of smooth boundaries or apical constriction in small groups of cells. In addition, we find that single cells experiencing lateral interface contractility are eliminated from tissues by apoptosis. Cysts, which disrupt epithelial continuity, form when elimination of single, aberrantly specified cells fails and cells proliferate to intermediate cell cluster sizes. Thus, increased interface contractility functions as error correction mechanism eliminating single aberrant cells from tissues, but failure leads to the formation of large, potentially disease-promoting cysts. Our results provide a novel perspective on morphogenetic mechanisms, which arise from cell-fate heterogeneities within tissues and maintain or disrupt epithelial homeostasis.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Morfogênese , Animais , Epitélio/metabolismo , Larva/crescimento & desenvolvimento
11.
PLoS One ; 10(12): e0144287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26636673

RESUMO

Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnfα, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription.


Assuntos
Histonas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transcrição Gênica , Acetilação , Animais , Benzimidazóis/farmacologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/biossíntese , Proteína p300 Associada a E1A/biossíntese , Instabilidade Genômica , Camundongos , Células NIH 3T3 , Fenantrenos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fatores de Transcrição de p300-CBP/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA