Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 473(7345): 66-9, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21544143

RESUMO

Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

2.
Proc Natl Acad Sci U S A ; 109(25): 9705-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22615358

RESUMO

PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at high temperature) of the valence band, the n-type versions are limited to a valley degeneracy of 4 in the conduction band. Yet the n-type lead chalcogenides achieve a zT nearly as high as the p-type lead chalcogenides. This effect can be attributed to the weaker electron-phonon coupling (lower deformation potential coefficient) in the conduction band as compared with that in the valence band, which leads to higher mobility of electrons compared to that of holes. This study of PbSe illustrates the importance of the deformation potential coefficient of the charge-carrying band as one of several key parameters to consider for band structure engineering and the search for high performance thermoelectric materials.

3.
J Am Chem Soc ; 134(16): 7147-54, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22480346

RESUMO

Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu(2+x)Zn(1-x)GeSe(4) (x = 0-0.1) are reported. The substitution of Zn(2+) with Cu(+) introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are located at the grain boundaries of the material. The impurities lead to enhanced phonon scattering, a significant reduction in lattice thermal conductivity, and therefore an increase in the thermoelectric figure of merit in these materials. This study also reveals the existence of an insulator-to-metal transition at 450 K.

4.
J Am Chem Soc ; 134(9): 4060-3, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22332903

RESUMO

A synthetic route for producing Cu(2)ZnGeSe(4) nanocrystals with narrow size distributions and controlled composition is presented. These nanocrystals were used to produce densely packed nanomaterials by hot-pressing. From the characterization of the thermoelectric properties of these nanomaterials, Cu(2)ZnGeSe(4) is demonstrated to show excellent thermoelectric properties. A very preliminary adjustment of the nanocrystal composition has already resulted in a figure of merit of up to 0.55 at 450 °C.

5.
Rev Sci Instrum ; 82(2): 025104, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361630

RESUMO

A rapid hot press system in which the heat is supplied by RF induction to rapidly consolidate thermoelectric materials is described. Use of RF induction heating enables rapid heating and consolidation of powdered materials over a wide temperature range. Such rapid consolidation in nanomaterials is typically performed by spark plasma sintering (SPS) which can be much more expensive. Details of the system design, instrumentation, and performance using a thermoelectric material as an example are reported. The Seebeck coefficient, electrical resistivity, and thermal diffusivity of thermoelectric PbTe material pressed at an optimized temperature and time in this system are shown to agree with material consolidated under typical consolidation parameters.

6.
Rev Sci Instrum ; 82(6): 063905, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721707

RESUMO

A high temperature Seebeck coefficient measurement apparatus with various features to minimize typical sources of error is designed and built. Common sources of temperature and voltage measurement error are described and principles to overcome these are proposed. With these guiding principles, a high temperature Seebeck measurement apparatus with a uniaxial 4-point contact geometry is designed to operate from room temperature to over 1200 K. This instrument design is simple to operate, and suitable for bulk samples with a broad range of physical types and shapes.

7.
Adv Mater ; 23(47): 5674-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22052689

RESUMO

The band structure of PbTe can be manipulated by alloying with MgTe to control the band degeneracy. This is used to stabilize the optimal carrier concentration, making it less temperature dependent, demonstrating a new strategy to improve overall thermoelectric efficiency over a broad temperature range.


Assuntos
Ligas/química , Conservação dos Recursos Naturais/métodos , Chumbo/química , Telúrio/química , Condutividade Elétrica , Magnésio/química , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Temperatura , Condutividade Térmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA