Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 16(2): 205, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30602782

RESUMO

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

2.
J Biol Chem ; 295(43): 14686-14697, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32826315

RESUMO

The biogenesis of mitochondria requires the import of hundreds of precursor proteins. These proteins are transported post-translationally with the help of chaperones, meaning that the overproduction of mitochondrial proteins or the limited availability of chaperones can lead to the accumulation of cytosolic precursor proteins. This imposes a severe challenge to cytosolic proteostasis and triggers a specific transcription program called the mitoprotein-induced stress response, which activates the proteasome system. This coincides with the repression of mitochondrial proteins, including many proteins of the intermembrane space. In contrast, herein we report that the so-far-uncharacterized intermembrane space protein Mix23 is considerably up-regulated when mitochondrial import is perturbed. Mix23 is evolutionarily conserved and a homolog of the human protein CCDC58. We found that, like the subunits of the proteasome, Mix23 is under control of the transcription factor Rpn4. It is imported into mitochondria by the mitochondrial disulfide relay. Mix23 is critical for the efficient import of proteins into the mitochondrial matrix, particularly if the function of the translocase of the inner membrane 23 is compromised such as in temperature-sensitive mutants of Tim17. Our observations identify Mix23 as a novel regulator or stabilizer of the mitochondrial protein import machinery that is specifically up-regulated upon mitoprotein-induced stress conditions.


Assuntos
Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteostase , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Regulação para Cima
3.
Nat Methods ; 15(8): 617-622, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988094

RESUMO

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Assuntos
Genoma Fúngico , Biblioteca Genômica , Proteoma/genética , Saccharomyces cerevisiae/genética , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Sequências Rotuladas
4.
Biol Chem ; 400(9): 1229-1240, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31199753

RESUMO

Mitochondrial biogenesis relies on the synthesis of hundreds of different precursor proteins in the cytosol and their subsequent import into the organelle. Recent studies suggest that the surface of the endoplasmic reticulum (ER) actively contributes to the targeting of some mitochondrial precursors. In the past, in vitro import experiments with isolated mitochondria proved to be extremely powerful to elucidate the individual reactions of the mitochondrial import machinery. However, this in vitro approach is not well suited to study the influence of non-mitochondrial membranes. In this study, we describe an in vitro system using semi-intact yeast cells to test a potential import relevance of the ER proteins Erg3, Lcb5 and Ssh1, all being required for efficient mitochondrial respiration. We optimized the conditions of this experimental test system and found that cells lacking Ssh1, a paralog of the Sec61 translocation pore, show a reduced import efficiency of mitochondrial precursor proteins. Our results suggest that Ssh1, directly or indirectly, increases the efficiency of the biogenesis of mitochondrial proteins. Our findings are compatible with a functional interdependence of the mitochondrial and the ER protein translocation systems.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Canais de Translocação SEC/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Sci Adv ; 8(35): eabo4946, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044574

RESUMO

Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.

6.
Mol Biol Cell ; 32(8): 664-674, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596095

RESUMO

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Science ; 361(6407): 1118-1122, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30213914

RESUMO

The majority of organellar proteins are translated on cytosolic ribosomes and must be sorted correctly to function. Targeting routes have been identified for organelles such as peroxisomes and the endoplasmic reticulum (ER). However, little is known about the initial steps of targeting of mitochondrial proteins. In this study, we used a genome-wide screen in yeast and identified factors critical for the intracellular sorting of the mitochondrial inner membrane protein Oxa1. The screen uncovered an unexpected path, termed ER-SURF, for targeting of mitochondrial membrane proteins. This pathway retrieves mitochondrial proteins from the ER surface and reroutes them to mitochondria with the aid of the ER-localized chaperone Djp1. Hence, cells use the expanse of the ER surfaces as a fail-safe to maximize productive mitochondrial protein targeting.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA