Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
PLoS Genet ; 14(5): e1007386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768408

RESUMO

Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Drosophila/genética , Mutação , Fatores de Transcrição de p300-CBP/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Animais , Proteínas de Ligação a Calmodulina/deficiência , Linhagem Celular , Células Cultivadas , Análise Mutacional de DNA , Proteínas de Drosophila/genética , Feminino , Cardiopatias/genética , Homozigoto , Humanos , Falência Renal Crônica/genética , Masculino , Linhagem , Fenótipo
4.
J Clin Invest ; 127(3): 912-928, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165339

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.


Assuntos
Aldeído Liases , Movimento Celular/genética , Ictiose Lamelar , Células Mesangiais/enzimologia , Mutação , Síndrome Nefrótica , Aldeído Liases/genética , Aldeído Liases/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Humanos , Ictiose Lamelar/enzimologia , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , Masculino , Células Mesangiais/patologia , Camundongos , Camundongos Knockout , Síndrome Nefrótica/enzimologia , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Transporte Proteico/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA