Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(12): e202200951, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852555

RESUMO

Herein, we deeply detail for the very first time mathematical concepts behind the generation of helical molecular orbitals (MOs) for linear chains of atoms. We first give a definition of helical MOs and we provide an index measuring how far a given helical states is from a perfect helical distribution. Structural properties of helical distribution for twisted N ${\left[N\right]}$ -cumulene and cumulene version of Möbius systems are given. We then give some simple structural assumptions as well as symmetry requirements ensuring the existence of helical MOs. Considering molecules which do not admit helical MOs, we provide a first way to induce helical states by the breaking of symmetries. We also explore an alternative way using excited conformations of given molecules as well as different electronic multiplicities.

2.
J Phys Chem A ; 127(43): 9088-9097, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875391

RESUMO

Fulminic and cyanic acids played a decisive role in the conception of isomerism 200 years ago. Cyanic (HOCN), isocyanic (HNCO), and fulminic (HCNO) acids have been detected in several interstellar sources, but isofulminic acid (HONC) is little known. Here we examine the interrelationships between the four acids and formylnitrene, HC(O)N, at the CASPT2 and three DFT levels. Formylnitrene has a triplet ground state, T0, a closed shell singlet (CSS), S0, and an open-shell singlet (OSS), S1, lying ∼7 and 27 kcal/mol above T0, respectively. The CSS is weakly stabilized by a 12 kcal/mol bond between the N and the O atoms. A conical intersection 12 kcal/mol above T0 permits easy T0-S0 interchange. Formyl azide and formylnitrene (T0 and S0) are isomerized thermally to HNCO. HOCN is best obtained via dissociation of the nitrene (or of HNCO) to H• + NCO• radicals ∼46 kcal/mol above the T0 nitrene. Isofulminic acid, HONC, isomerizes readily to cyanic acid, HOCN, in thermal and photochemical reactions. Fulminic acid, HCNO, can isomerize to HNCO via CSS formylnitrene. Easy tautomerization prevents the preparation of HOCN in quantity. The barrier to isomerization is strongly reduced in small hydrogen-bonded aggregates so that trace amounts of HOCN can exist in equilibrium with HNCO.

3.
Inorg Chem ; 61(7): 3033-3049, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35143722

RESUMO

In this report, we investigate a new family of cationic iridium(III) complexes featuring the cyclometalating ligand 2-phenylbenzimidazole and ancillary ligand 4,4'-dimethyl-2,2'-bipyridine. Our benchmark complex IrL12 (L1 = 2-phenylbenzimidazole) displays emission properties similar to those of the archetypical complex 2,2'-dipyridylbis(2',4'-phenylpyridine)iridium(III) in deaerated CH3CN (Φ = 0.20, λem = 584 nm and Φ = 0.14, λem = 585 nm, respectively) but exhibits a higher photoluminescence quantum yield in deaerated CH2Cl2 (Φ = 0.32, λem = 566 nm and Φ = 0.20, λem = 595 nm, respectively) and especially a lower nonradiative constant (knr = 6.6 × 105 s-1 vs knr = 1.4 × 106 s-1, respectively). As a primary investigation, we explored the influence of the introduction of electron-donating and electron-withdrawing groups on the benzimidazole moiety and the synergetic effect of the substitution of the cyclometalating phenyl moiety at the para position with the same substituents. The emission energy displays very good correlation with the Hammett constants of the introduced substituents as well as with ΔEredox values, which allow us to ascribe the phosphorescence of these series to emanate mainly from a mixed metal/ligand to ligand charge transfer triplet excited state (3M/LLCT*). Two complexes (IrL52 and IrL82) display a switch of the lowest triplet excited state from 3M/LLCT* to ligand centered (3LC*), from the less polar CH2Cl2 to the more polar CH3CN. The observed results are supported by (TD)-DFT computations considering the vibrational contributions to the electronic transitions. Chromaticity diagrams based on the maximum emission wavelength of the recorded and simulated phosphorescence spectra demonstrate the strong promise of our complexes as emitting materials, together with the very good agreement between experimental and theoretical results.

4.
Phys Chem Chem Phys ; 24(4): 2482-2490, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023517

RESUMO

This article reports for the first time an in-depth ab initio computational study on intrinsic point defects in Sr4Al14O25 that serves as host lattice for numerous phosphors. Defect Formation Enthalpies (DFEs) and defect concentrations were computed considering the supercell approach for different oxygen atmospheres. The charge transition levels have been determined for several point defects in their thermodynamically stable state and their impact on the electronic structure of the ideal unfaulted material is discussed. Our simulations demonstrated that the formation of most of native point defects is energy intensive under oxygen-rich, -intermediate or -poor synthesis conditions, except for the oxygen vacancies under O-poor atmosphere.

5.
Phys Rev Lett ; 123(23): 237203, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868481

RESUMO

Kitaev magnets are materials with bond-dependent Ising interactions between localized spins on a honeycomb lattice. Such interactions could lead to a quantum spin-liquid (QSL) ground state at zero temperature. Recent theoretical studies suggest two potential signatures of a QSL at finite temperatures, namely, a scaling behavior of thermodynamic quantities in the presence of quenched disorder, and a two-step release of the magnetic entropy. Here, we present both signatures in Ag_{3}LiIr_{2}O_{6} which is synthesized from α-Li_{2}IrO_{3} by replacing the interlayer Li atoms with Ag atoms. In addition, the dc susceptibility data confirm the absence of a long-range order, and the ac susceptibility data rule out a spin-glass transition. These observations suggest a closer proximity to the QSL in Ag_{3}LiIr_{2}O_{6} compared to its parent compound α-Li_{2}IrO_{3} that orders at 15 K. We discuss an enhanced spin-orbit coupling due to a mixing between silver d and oxygen p orbitals as a potential underlying mechanism.

6.
Inorg Chem ; 56(12): 6879-6889, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28586215

RESUMO

The synthesis and properties of a novel hetero-tetranuclear compound [Cr2(bpy)4(µ-O)4Nb2(C2O4)4]·3H2O (1; bpy = 2,2'-bipyridine), investigated by single-crystal X-ray diffraction, magnetization measurements, IR, UV/visible spectroscopy, electron paramagnetic resonance (EPR; X- and Q-bands and high-field), and density functional theory (DFT) calculations, are reported. Crystal structure of 1 (orthorhombic Pcab space group) consists of a square-shaped macrocyclic {Cr2(µ-O)4Nb2} core in which CrIII and NbV ions are alternately bridged by oxo ions and three uncoordinated water molecules. The intramolecular CrIII···CrIII distances through the -O-NbV-O- bridges are 7.410(2) and 7.419(2) Å, while diagonal separation is 5.406(2) Å. The temperature dependence of magnetization M(T) evidences an anti-ferromagnetic ground state, which originates from a magnetic interaction between two CrIII ions of spin 3/2 through two triatomic -O-NbV-O- diamagnetic bridges. A spin Hamiltonian appropriate for polynuclear isolated magnetic units was used. The best-fitting curve for this model is obtained with the parameters gCr = 1.992(3), J = -12.77(5) cm-1, and |D| = 0.17(4) cm-1. The CrIII···CrIII dimer model is confirmed by EPR spectra, which exhibit a pronounced change of their shape around the temperature corresponding to the intradimer coupling J. The EPR spectra simulations and DFT calculations reveal the presence of a single-ion anisotropy that is close to being uniaxial, D = -0.31 cm-1 and E = 0.024 cm-1.

7.
J Phys Condens Matter ; 34(9)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34818633

RESUMO

Here, we report a theoretical investigation of the electronic and magnetic properties of two oxohalide compounds, namely Cu3(SeO3)2Cl2and Cu3(TeO3)2Br2, using density functional theory (DFT). These layered systems are characterized by two inequivalent Cu sites, with CuO4and CuO4X(X= Cl, Br) environments, respectively. A new magnetic model is proposed through the calculation of the magnetic exchange couplings. Our study discloses the participation of the Se and Te lone-pairs to the long-range magnetic order, providing potential key informations for future chemical design of original magnetic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA