Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354783

RESUMO

Glycosyltransferases (GT) catalyze the glycosylation of bioactive natural products, including peptides and proteins, flavonoids, and sterols, and have been extensively used as biocatalysts to generate glycosides. However, the often narrow substrate specificity of wild-type GTs requires engineering strategies to expand it. The GT-B structural family is constituted by GTs that share a highly conserved tertiary structure in which the sugar donor and acceptor substrates bind in dedicated domains. Here, we have used this selective binding feature to design an engineering process to generate chimeric glycosyltransferases that combine auto-assembled domains from two different GT-B enzymes. Our approach enabled the generation of a stable dimer with broader substrate promiscuity than the parent enzymes that were related to relaxed interactions between domains in the dimeric GT-B. Our findings provide a basis for the development of a novel class of heterodimeric GTs with improved substrate promiscuity for applications in biotechnology and natural product synthesis.


Assuntos
Biocatálise , Glicosiltransferases , Flavonoides/química , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Especificidade por Substrato , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Bioengenharia/métodos
2.
Curr Issues Mol Biol ; 46(1): 710-728, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248348

RESUMO

The catalytically inactive caspase-8-homologous protein, c-FLIP, is a potent antiapoptotic protein highly expressed in various types of cancers. c-FLIP competes with caspase-8 for binding to the adaptor protein FADD (Fas-Associated Death Domain) following death receptors' (DRs) activation via the ligands of the TNF-R family. As a consequence, the extrinsic apoptotic signaling pathway involving DRs is inhibited. The inhibition of c-FLIP activity in tumor cells might enhance DR-mediated apoptosis and overcome immune and anticancer drug resistance. Based on an in silico approach, the aim of this work was to identify new small inhibitory molecules able to bind selectively to c-FLIP and block its anti-apoptotic activity. Using a homology 3D model of c-FLIP, an in silico screening of 1880 compounds from the NCI database (National Cancer Institute) was performed. Nine molecules were selected for in vitro assays, based on their binding affinity to c-FLIP and their high selectivity compared to caspase-8. These molecules selectively bind to the Death Effector Domain 2 (DED2) of c-FLIP. We have tested in vitro the inhibitory effect of these nine molecules using the human lung cancer cell line H1703, overexpressing c-FLIP. Our results showed that six of these newly identified compounds efficiently prevent FADD/c-FLIP interactions in a molecular pull-down assay, as well as in a DISC immunoprecipitation assay. The overexpression of c-FLIP in H1703 prevents TRAIL-mediated apoptosis; however, a combination of TRAIL with these selected molecules significantly restored TRAIL-induced cell death by rescuing caspase cleavage and activation. Altogether, our findings indicate that new inhibitory chemical molecules efficiently prevent c-FLIP recruitment into the DISC complex, thus restoring the caspase-8-dependent apoptotic cascade. These results pave the way to design new c-FLIP inhibitory molecules that may serve as anticancer agents in tumors overexpressing c-FLIP.

3.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732045

RESUMO

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Assuntos
Galactose , Galactose/análogos & derivados , Galactose/metabolismo , Galactose/química , Aspergillus/metabolismo , Aspergillus/genética , Lectinas/metabolismo , Lectinas/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Mananas/química , Animais , Soroalbumina Bovina/química
4.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542958

RESUMO

This study unveils an innovative method for synthesizing coumarin S-glycosides, employing original biocatalysts able to graft diverse carbohydrate structures onto 7-mercapto-4-methyl-coumarin in one-pot reactions. The fluorescence properties of the generated thio-derivatives were assessed, providing valuable insights into their potential applications in biological imaging or sensing. In addition, the synthesized compounds exhibited no cytotoxicity across various human cell lines. This research presents a promising avenue for the development of coumarin S-glycosides, paving the way for their application in diverse biomedical research areas.


Assuntos
Cumarínicos , Glicosídeos , Humanos , Glicosídeos/química , Cumarínicos/química
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047295

RESUMO

Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.


Assuntos
Arabidopsis , Populus , Proteínas de Saccharomyces cerevisiae , Histidina Quinase/genética , Histidina Quinase/metabolismo , Ácido Aspártico/metabolismo , Histidina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Populus/genética , Populus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
Nature ; 539(7630): 593-597, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27851736

RESUMO

The universal Per-ARNT-Sim (PAS) domain functions as a signal transduction module involved in sensing diverse stimuli such as small molecules, light, redox state and gases. The highly evolvable PAS scaffold can bind a broad range of ligands, including haem, flavins and metal ions. However, although these ligands can support catalytic activity, to our knowledge no enzymatic PAS domain has been found. Here we report characterization of the first PAS enzyme: a haem-dependent oxidative N-demethylase. Unrelated to other amine oxidases, this enzyme contains haem, flavin mononucleotide, 2Fe-2S and tetrahydrofolic acid cofactors, and specifically catalyses the NADPH-dependent oxidation of dimethylamine. The structure of the α subunit reveals that it is a haem-binding PAS domain, similar in structure to PAS gas sensors. The dimethylamine substrate forms part of a highly polarized oxygen-binding site, and directly assists oxygen activation by acting as both an electron and proton donor. Our data reveal that the ubiquitous PAS domain can make the transition from sensor to enzyme, suggesting that the PAS scaffold can support the development of artificial enzymes.


Assuntos
Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Pseudomonas mendocina/enzimologia , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Dimetilaminas/metabolismo , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Tetra-Hidrofolatos/metabolismo
7.
Org Biomol Chem ; 18(29): 5582-5585, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671369

RESUMO

The ß-d-glucuronidase DtGlcA from Dictyoglomus thermophilum was engineered to generate an active thioglycoligase that is able to catalyse the formation of numerous S-glucuronides. Its X-ray structure analysis indicated the ability of the biocatalyst to bind aromatic thiol acceptors for S-glycosylation. Noteworthily, the DtGlcA mutant was found to be the first thioligase that is able to use a natural sugar donor different from the widely used synthetic para-nitrophenyl glycosides.

8.
Org Biomol Chem ; 18(37): 7366-7372, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32924046

RESUMO

The monosaccharide Tn and the disaccharide STn are tumor antigens with similar structures and common biosynthetic pathways. Both are always over-expressed simultaneously on tumor cell surfaces. We report herein the efficient synthesis of the STnThr antigen analogue 2, featuring the immunogenic TnThr mimetic 1 aglycon. Analogously to the native STn, 2 is recognized by the influenza N1 neuraminidase. A model of the N1·2 complex showed the sialyl moiety of 2 well nested in the active site pocket, with docking unaffected by the rigid aglycon. The analogue 2 is, therefore, in association with mimetic 1, a good determinant for the design of new multiantigen cancer vaccines.


Assuntos
Antígenos Glicosídicos Associados a Tumores
9.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423053

RESUMO

Galactofuranose is a rare form of the well-known galactose sugar, and its occurrence in numerous pathogenic micro-organisms makes the enzymes responsible for its biosynthesis interesting targets. Herein, we review the role of these carbohydrate-related proteins with a special emphasis on the galactofuranosidases we recently characterized as an efficient recombinant biocatalyst.


Assuntos
Galactose/genética , Hidrolases/genética , Açúcares/metabolismo , Transferases/genética , Metabolismo dos Carboidratos , Carboidratos/genética , Galactose/biossíntese , Galactose/metabolismo , Humanos , Mananas/metabolismo
10.
Nature ; 496(7445): 382-5, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23575632

RESUMO

Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.


Assuntos
Ciclopropanos/química , Ciclopropanos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/química , Saccharomyces cerevisiae/enzimologia , Arginina/metabolismo , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/enzimologia , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Modelos Moleculares , Terapia de Alvo Molecular , Conformação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012976

RESUMO

The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B' and F that would be important for maintaining the overall folding of CYP2J2.


Assuntos
Arginina/genética , Sistema Enzimático do Citocromo P-450/genética , Simulação de Acoplamento Molecular , Mutação , Arginina/química , Arginina/metabolismo , Butirofenonas/química , Butirofenonas/metabolismo , Domínio Catalítico , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Ligação de Hidrogênio , Hidroxilação , Estrutura Molecular , Piperidinas/química , Piperidinas/metabolismo , Conformação Proteica , Especificidade por Substrato
12.
Nature ; 477(7366): 616-20, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892188

RESUMO

Post-translational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis. Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose-ribose bond, and is synthesized from NAD by PAR polymerases. PAR glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death. Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that has all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macrodomain family. High-resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. The insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation are linked to human disease.


Assuntos
Actinomycetales/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Humanos , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Conformação Proteica , Proteínas/metabolismo , Pirrolidinas/farmacologia
13.
Beilstein J Org Chem ; 13: 1857-1865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062404

RESUMO

Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.

14.
Org Biomol Chem ; 14(26): 6252-61, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264508

RESUMO

Thioglycosides, even if rare in Nature, have gained increased interest for their biological properties. Chemical syntheses of this class of compounds have been largely studied but little has been reported on their biosynthesis. Herein, combining experiments from the different fields of enzymology, bioorganic chemistry and molecular modeling, we wish to demonstrate the versatility of the glucosyltransferase UGT74B1 and its synthetic potency for the preparation of a variety of natural and unnatural desulfoglycosinolates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Biocatálise , Glucosiltransferases/química , Glicosídeos/química , Estrutura Molecular
15.
Chemistry ; 21(5): 1978-91, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25483029

RESUMO

Terminal "high-mannose oligosaccharides" are involved in a broad range of biological and pathological processes, from sperm-egg fusion to influenza and human immunodeficiency virus infections. In spite of many efforts, their synthesis continues to be very challenging and actually represents a major bottleneck in the field. Whereas multivalent presentation of mannopyranosyl motifs onto a variety of scaffolds has proven to be a successful way to interfere in recognition processes involving high-mannose oligosaccharides, such constructs fail at reproducing the subtle differences in affinity towards the variety of protein receptors (lectins) and antibodies susceptible to binding to the natural ligands. Here we report a family of functional high-mannose oligosaccharide mimics that reproduce not only the terminal mannopyranosyl display, but also the core structure and the branching pattern, by replacing some inner mannopyranosyl units with triazole rings. Such molecular design can be implemented by exploiting "click" ligation strategies, resulting in a substantial reduction of synthetic cost. The binding affinities of the new "click" high-mannose oligosaccharide mimics towards two mannose specific lectins, namely the plant lectin concanavalin A (ConA) and the human macrophage mannose receptor (rhMMR), have been studied by enzyme-linked lectin assays and found to follow identical trends to those observed for the natural oligosaccharide counterparts. Calorimetric determinations against ConA, and X-ray structural data support the conclusion that these compounds are not just another family of multivalent mannosides, but real "structural mimics" of the high-mannose oligosaccharides.


Assuntos
Lectinas/química , Manose/química , Manose/síntese química , Oligossacarídeos/química , Química Click , Humanos
16.
Biochemistry ; 53(9): 1447-55, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24527659

RESUMO

Glycosyl hydrolase (GH) family 29 (CAZy database) consists of retaining α-l-fucosidases. We have identified BT2192, a protein from Bacteroides thetaiotaomicron, as the first GH29 representative exhibiting both weak α-l-fucosidase and ß-d-galactosidase activities. Determination and analysis of X-ray structures of BT2192 in complex with ß-d-galactoside competitive inhibitors showed a new binding mode different from that of known GH29 enzymes. Three point mutations, specific to BT2192, prevent the canonical GH29 substrate α-l-fucose from binding efficiently to the fucosidase-like active site relative to other GH29 enzymes. ß-d-Galactoside analogues bind and interact in a second pocket, which is not visible in other reported GH29 structures. Molecular simulations helped in the assessment of the flexibility of both substrates in their respective pocket. Hydrolysis of the fucosyl moiety from the putative natural substrates like 3-fucosyllactose or Lewis(X) antigen would be mainly due to the efficient interactions with the galactosyl moiety, in the second binding site, located more than 6-7 Å apart.


Assuntos
Bacteroides/enzimologia , Bacteroides/metabolismo , Domínio Catalítico , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação Puntual , Especificidade por Substrato , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
Anal Bioanal Chem ; 406(15): 3743-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24817345

RESUMO

Human kinases are one of the most promising targets for cancer therapy. Methods able to measure the effects of drugs on these cell agents remain crucial for biologists and medicinal chemists. The current work therefore sought to develop an in-capillary enzymatic assay based on capillary electrophoresis (CE) to evaluate the inhibition of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR). These kinases belong to the same signaling pathway PI3K/Akt/mTOR. For this proposal, the capillary was used as a nanoreactor in which a few nanoliters of the kinase, its substrate, adenosine triphosphate (ATP), and the potent inhibitor were separately injected. A transverse diffusion of laminar flow profiles (TDLFP) approach was employed to mix the reactants. Adenosine diphosphate (ADP ) was detected online at 254 nm. The CE assay was first developed on the α isoform of PI3K. It was compared to five commercial kits frequently used to assess kinase inhibition, based on time-resolved fluorescence resonance energy transfer (TR-FRET) and bioluminescence. Each assay was evaluated in terms of sensitivity (S/B), reproducibility (Z'), and variability (r (2)). This CE method was easily extended to assay the inhibition of the ß, γ, and δ isoforms of PI3K, and of the other kinases of the pathway, Akt1 and mTOR, since it is based on in-capillary mixing by TDLFP and on ADP quantification by simple UV absorption. This work shows for the first time the evaluation of inhibitors of the kinases of the PI3K/Akt/mTOR pathway using a common in-capillary CE assay. Several inhibitors with a wide range of affinity toward these enzymes were tested.


Assuntos
Eletroforese Capilar/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Androstadienos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Luminescência , Inibidores de Proteínas Quinases/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Wortmanina
18.
Anal Bioanal Chem ; 405(28): 9159-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24057022

RESUMO

In this study, a novel capillary electrophoresis (CE)-based enzymatic assay was developed to evaluate enzymatic activity in whole cells. ß-Galactosidase expression was used as an example, as it is a biomarker for assessing replicative senescence in mammalian cells. It catalyzes the hydrolysis of para-nitrophenyl-ß-D-galactopyranoside (PNPG) into para-nitrophenol (PNP). The CE-based assay consisted of four main steps: (1) hydrodynamic injection of whole intact cells into the capillary, (2) in-capillary lysis of these cells by using pulses of electric field (electroporation), (3) in-capillary hydrolysis of PNPG by the ß-galactosidase--released from the lysed cells--by the electrophoretically mediated microanalysis (EMMA) approach, and (4) on-line detection and quantification of the PNP formed. The developed method was applied to Escherichia coli as well as to human keratinocyte cells at different replicative stages. Results obtained by CE were in excellent agreement with those obtained from off-line cell lysates which proves the efficiency of the in-capillary approach developed. This work shows for the first time that cell membranes can be disrupted in-capillary by electroporation and that the released enzyme can be subsequently quantified in the same capillary. Enzyme quantification in cells after their in-capillary lysis has never been conducted by CE. The developed CE approach is automated, economic, eco-friendly, and simple to conduct. It has attractive applications in bacteria or human cells for early disease diagnostics or insights for development in biology.


Assuntos
Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Queratinócitos/enzimologia , beta-Galactosidase/química , Membrana Celular/química , Membrana Celular/enzimologia , Escherichia coli/química , Humanos , Hidrólise , Queratinócitos/química , Cinética
19.
J Sep Sci ; 36(13): 2151-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576390

RESUMO

CE was used for the first time to study the two-substrate enzyme glycerol kinase. The capillary was used as a nanoreactor in which the enzyme and its two substrates glycerol and adenosine-5'-triphosphate were in-capillary mixed to realize the enzymatic assay. For kinetic parameters determination, reactants were injected (50 mbar × 5 s) as follows: (i) incubation buffer; (ii) adenosine-5'-triphosphate; (iii) enzyme, and (iv) glycerol. Enzymatic reaction was then initiated by mixing the reactants using electrophoretically mediated microanalysis (+20 kV for 6 s) followed by a zero-potential amplification step of 3 min. Finally, electrophoretic separation was performed; the product adenosine-5'-diphosphate was detected at 254 nm and quantified. For enzyme inhibition, an allosteric inhibitor fructose-1,6-bisphosphate plug was injected before the first substrate plug and +20 kV for 8 s was applied for reactant mixing. A simple, economic, and robust CE method was developed for monitoring glycerol kinase activity and inhibition. Only a few tens of nanoliters of reactants were used. The results compared well with those reported in literature. This study indicates, for the first time, that at least four reactant plugs can be in-capillary mixed using an electrophoretically mediated microanalysis approach.

20.
Nat Prod Rep ; 29(7): 729-38, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22511359

RESUMO

Glycosylation represents the most complex co- and post-translational modification of proteins. In addition to N- and O-glycans, almost all combinations, including the nature of the carbohydrate moiety and the amino-acid involved, but also the type of the chemical linkage, can be isolated from natural glycoconjugates. This diversity correlates with the importance and the variety of the biological processes (and consequently the diseases) glycosides are involved in. This review focuses on rare and unusual glycosylation of peptides and proteins.


Assuntos
Glicosiltransferases/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Metabolismo dos Carboidratos , Glicosilação , Humanos , Estrutura Molecular , Peptídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA