Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 186: 106551, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370918

RESUMO

Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.


Assuntos
Nanoestruturas , Fotoquimioterapia , Humanos , Hipóxia Tumoral , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Hipóxia/tratamento farmacológico
2.
J Photochem Photobiol B ; 255: 112920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669742

RESUMO

As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Humanos , Animais
3.
Curr Med Chem ; 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37062062

RESUMO

Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its non-toxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan-based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan-based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.

4.
Curr Med Chem ; 30(24): 2710-2733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36017849

RESUMO

The in-depth intersection between nanoscience and oncology comes from the fact that nanomaterials are in a similar dimension to basic biomolecules. Drug delivery systems (DDSs), which are either targeted to a particular site or intended for the controlled release in a particular position, have been studied extensively at the nanoscale and are, by far, the most advanced technology in the area of nanoparticle applications. This, consequently lead to the improvement and development of convenient administration routes, lower toxicity, fewer side effects, and extended drug life cycle. Carbon nanomaterials (CNMs) with favorable size and unique fluorescence properties, which was considered an ideal candidate to transport or deliver therapeutic drugs to specific targets in a controlled manner. The development of DDSs based on them constitutes an interesting topic in highly effective and universal therapies to achieve better therapeutic outcomes and reduce the side effects of malignancies. In this review, the cutting-edge progress of CNMs in DDSs was comprehensively summarized. Additionally, the emphasis was placed on the applications of CNMs including fullerene, graphene, carbon nanotubes (CNTs), carbon dots (CDs), and nano-diamonds (NDs) in drug delivering. Further, we gave some insights into the future direction and foreseeable challenges of DDSs based on CNMs used in cancer therapy, which we hope these inspirations in DDSs associated with anti-cancer therapy will provide perspectives in designing new drugs for further tumor treatment.


Assuntos
Fulerenos , Nanoestruturas , Nanotubos de Carbono , Neoplasias , Humanos , Preparações Farmacêuticas , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123111, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37437461

RESUMO

Synthesis of lignin-based carbon dots (LCDs) with high quantum yield (QY), stable fluorescence properties and biocompatibility has been a challenge. Here, we propose an improved two-step strategy for producing high-quality LCDs from enzymatic hydrolysis lignin (EHL). The p-aminobenzenesulfonic acid used in the strategy not only provides nitrogen and sulfur elements, but also tailors the disordered three-dimensional structure of EHL. The successful co-doping of N and S elements favors the reduction of the optical energy bandgap (Eg), resulting in a high QY of 45.05% for LCDs. The LCDs exhibited superior selectivity and sensitivity for Fe3+ with a limit of detection (LOD) of 0.15 µM when Fe3+ concentration was 50-500 µM. In addition, LCDs demonstrated significant fluorescence in HepG2 cells and HepG2 cells loaded with LCDs at a concentration of 80 µg/mL showed good viability, suggesting that they are suitable for in vivo applications. The luminescent centers of LCDs change during pH regulation and thus show a special visual response to pH changes, making them have great potential for detecting metabolism in living cells. This work provides a novel and low-cost method for fabricating sustainable fluorescent probes for chemical sensing and bioimaging.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Lignina , Corantes Fluorescentes/química , Fluorescência , Enxofre/química , Nitrogênio/química , Concentração de Íons de Hidrogênio , Pontos Quânticos/química
6.
Asian J Pharm Sci ; 18(4): 100828, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583709

RESUMO

Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.

7.
J Colloid Interface Sci ; 635: 441-455, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599242

RESUMO

Therapeutic modalities and drug formulations play a crucial and prominent role in actualizing effective treatment and radical cures of tumors. However, the therapeutic efficiency was severely limited by tumor recurrence and complex multi-step preparation of formulation. Therefore, the exploration of novel nanoparticles via a simple and green synthesis process for conquering traditional obstacles and improving therapeutic efficiency is an appealing, yet remarkably challenging task. Herein, a universal nanoplatform allows all cancerous cell-targeting, acid-responsive, cell imaging, synergistic chemotherapy, and nucleolar targeted phototherapy function was tactfully designed and constructed by using chemotherapeutic agents ursolic acid (UA), sorafenib (SF), and carbon dots (CDs) photosensitizers (PSs). The designed US NPs were formed by self-assembly of UA and SF associated with electrostatic, π-π stacking, and hydrophobic interactions. After hydrogen bonding reaction with CDs, the obtained (denoted as USC NPs) have a relatively uniform size of an average 125.6 nm, which facilitated the favorable accumulation of drugs at the tumor region through a potential enhanced permeability and retention (EPR) effect as compared to their counterpart of free CDs solution. Both in vitro and in vivo studies revealed that the advanced platform commenced synergistic anticancer therapeutic potency, imperceptible systematical toxicity, and remarkable reticence towards drug-resistant cancer cells. Moreover, the CDs PSs possess intrinsic nucleolus-targeting ability. Taken together, this theranostics system can fully play the role of "killing three birds with one stone" in a safe manner, implying a promising direction for exploring treatment strategies for cancer and endowing them with great potential for future translational research and providing a new vision for the advancing of an exceptionally forceful protocol for practical cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Fototerapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Linhagem Celular Tumoral
8.
J Colloid Interface Sci ; 650(Pt A): 526-540, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423180

RESUMO

Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.


Assuntos
Produtos Biológicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Cobre/química , Carcinoma Hepatocelular/tratamento farmacológico , Peróxido de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Glutationa , Microambiente Tumoral
9.
Int J Biol Macromol ; 165(Pt A): 1149-1155, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038399

RESUMO

As a kind of lignocellulosic biomass, Pennisetum sinense (P. sinense) is commonly used as animal feed, fertilizer or papermaking raw materials. Based on the high carbon content and renewability of P. sinense, we explored the possibility and feasibility of using it as catalyst matrix. The catalyst was produced by sulfonation of char obtained from the carbonization of P. sinense at 550 °C. The structure of the catalyst was characterized by SEM, BET, XRD, FT-IR, XPS and TGA, and its catalytic performance for the hydrolysis of cellulose was investigated in detail. The highest acidity of the catalyst was 3.79 mmol/g and the maximum glucose yield of 59.92% was achieved under optimized conditions. The catalyst also showed a promising reusability. The glucose yield was 53.01% after 5 cycles and as high as 55.92% when using the regenerated catalyst.


Assuntos
Biomassa , Catálise , Celulose/química , Pennisetum/química , Ácidos/química , Carbono/química , Glucose/química , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA