Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850198

RESUMO

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Fosfatídicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipóxia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fenótipo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363812

RESUMO

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , Multiômica
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495363

RESUMO

As all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are widely accepted in treating acute promyelocytic leukemia (APL), deescalating toxicity becomes a research hotspot. Here, we evaluated whether chemotherapy could be replaced or reduced by ATO in APL patients at different risks. After achieving complete remission with ATRA-ATO-based induction therapy, patients were randomized (1:1) into ATO and non-ATO groups for consolidation: ATRA-ATO versus ATRA-anthracycline for low-/intermediate-risk patients, or ATRA-ATO-anthracycline versus ATRA-anthracycline-cytarabine for high-risk patients. The primary end point was to assess disease-free survival (DFS) at 3 y by a noninferiority margin of -5%; 855 patients were enrolled with a median follow-up of 54.9 mo, and 658 of 755 patients could be evaluated at 3 y. In the ATO group, 96.1% (319/332) achieved 3-y DFS, compared to 92.6% (302/326) in the non-ATO group. The difference was 3.45% (95% CI -0.07 to 6.97), confirming noninferiority (P < 0.001). Using the Kaplan-Meier method, the estimated 7-y DFS was 95.7% (95% CI 93.6 to 97.9) in ATO and 92.6% (95% CI 89.8 to 95.4) in non-ATO groups (P = 0.066). Concerning secondary end points, the 7-y cumulative incidence of relapse (CIR) was significantly lower in ATO (2.2% [95% CI 1.1 to 4.2]) than in non-ATO group (6.1% [95% CI 3.9 to 9.5], P = 0.011). In addition, grade 3 to 4 hematological toxicities were significantly reduced in the ATO group during consolidation. Hence, ATRA-ATO in both chemotherapy-replacing and -reducing settings in consolidation is not inferior to ATRA-chemotherapy (https://www.clinicaltrials.gov/, NCT01987297).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Trióxido de Arsênio/administração & dosagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Trióxido de Arsênio/efeitos adversos , Quimioterapia de Consolidação/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Resultado do Tratamento , Tretinoína/efeitos adversos
4.
Cancer ; 129(13): 2013-2022, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951498

RESUMO

BACKGROUND: Minimal residual disease (MRD) is an important prognostic factor for survival in adults with acute leukemia. The role of pretransplantation MRD status in myelodysplastic syndrome with excess blasts (MDS-EB) is unknown. This study retrospectively analyzed the relationship between pretransplantation MRD status and long-term survival. MATERIALS AND METHODS: Patients with MDS-EB who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) from March 5, 2005, to November 8, 2020, were included. The relationship between pretransplantation MRD status and long-term survival was analyzed using univariate and multivariate logistic regression models. RESULTS: Of 220 patients with MDS-EB who underwent allo-HSCT, 198 were eligible for inclusion in this multicenter, retrospective cohort study. Complete remission was attained in 121 (61.1%) patients, and 103 patients underwent detection of MRD pretransplantation, with 67 patients being MRD-positive and 36 patients being MRD-negative. The median follow-up time was 16 months, the median age was 41 years (6-65 years), and 58% of the patients were men. The 3-year disease-free survival (DFS) and overall survival (OS) probabilities for all patients were 70.1% and 72.9%, respectively. For patients in complete remission, the 3-year DFS and OS probabilities were 72.2% and 74.8%, respectively. Further analysis found that the 3-year DFS rates of MRD-negative and MRD-positive patients were 85.6% and 66.5% (p = .045), respectively, whereas the 3-year OS rates were 91.3% and 66.4% (p = .035), respectively. Univariate and multivariate analyses showed that poor pretransplantation MRD clearance was an independent prognostic risk factor for DFS and OS. CONCLUSION: Poor pretransplantation MRD clearance is an independent prognostic risk factor for long-term survival after allo-HSCT for patients with MDS-EB. PLAIN LANGUAGE SUMMARY: Poor minimal residual disease clearance pretransplanation is an independent prognostic risk factor for long-term survival after allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome with excess blasts.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Masculino , Humanos , Feminino , Prognóstico , Estudos Retrospectivos , Neoplasia Residual/diagnóstico , Síndromes Mielodisplásicas/terapia , Fatores de Risco
5.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840365

RESUMO

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Assuntos
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética
6.
Chem Biodivers ; 20(5): e202201179, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027518

RESUMO

The compound of essential oils (EOs) is a key approach to achieving the superimposed efficacy of plant EOs. In this article, grey correlation analysis was applied for the first time to explore the compound ratios and contribution between constituents and the bioactivity of the compound EOs. There were 12 active constituents shared in rosemary and magnolia EOs prepared by negative pressure distillation. With different proportions, these two EOs were blended and analyzed for the antioxidant, bacteriostatic and antitumor effects. According to the results of the inhibition circle, minimum bactericidal and inhibitory concentration, the most obvious inhibition effect of the compound EOs on different strains of bacteria was shown in Staphylococcus aureus. The results of antioxidant test showed that single EO from rosemary had the best antioxidant effect, and its EO content was directly proportional to the antioxidant effect. The cytotoxicity results showed that, there was a significant difference in the lethality of the compound EOs between tumor cells Mcf-7 (human breast cancer cells) and SGC-7901 cells (human gastric cancer cells). Furthermore, single EO from magnolia had an obvious inhibitory effect on the growth of Mcf-7 cells and SGC-7901 cells, and the cell lethality rate was as high as 95.19 % and 97.96 %, respectively. As the results of grey correlation analysis, the constituents with the maximal correlation of inhibitory effects on bacteria were as follows: S. aureus - Terpinolene (0.893), E. coli - Eucalyptol (0.901), B. subtilis - α-Pinene (0.823), B. cereus - Terpinolene (0.913) and Salmonella - α-Phellandrene (0.855). For the ABTS and DPPH scavenging effects, the constituents with the maximal correlation were (-)-Camphor (0.860) and ß-Pinene (0.780), respectively. In terms of the effects of the active constituents of compound EOs on the inhibitory activities of tumor cells Mcf-7 and SGC-7901, the three active constituents of γ-Terpinene, (R)-(+)-ß-Citronellol and (-)-Camphor were in the top three, and their correlation were Mcf-7 (0.833, 0.820, 0.795) and SGC-7901 (0.797, 0.766, 0.740). Our study determined the contribution degree of active constituents in the antibacterial, antioxidant, and antitumor bioactivities of rosemary-magnolia compound EOs, and also provided new insights for the research of EOs combination formulations.


Assuntos
Magnolia , Óleos Voláteis , Rosmarinus , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Cânfora/farmacologia , Staphylococcus aureus , Escherichia coli , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
7.
Genomics ; 114(3): 110375, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35490893

RESUMO

Phoebe bournei is a potential medicinal plant. Its essential oils (Eos) are mainly composed of sesquiterpenes that has potential activities of anti-bacteria and anti-tumors. In this study, we evaluated the effects of compost and compound fertilizer on the total amount and main components of Eos in P. bournei, we also studied the molecular mechanism undergoing this process by deep sequencing the genes involved in the biosynthesis of sesquiterpenes. Fertilization enhanced the total amount of main components in Eos from both leaves and twigs. Bicyclogermacrene, the primary sesquiterpene in the leaf EO, was significantly increased under compost treatment, while bicyclogermacrene and δ-cadinene (the second most abundant sesquiterpene) were decreased under compound fertilizer treatment. The two fertilizers had no significant effect on the abundance of the primary (+) - δ-cadinene in the twig EO, but had a positive effect on the second most abundant sesquiterpene copaene. Significant differences were observed in the number of differentially expressed genes (DEGs) with the leaves showing greater number of DEGs as compared to the twigs after compost treatment. Terpenoid backbone biosynthesis (TBB) is a key pathway of sesquiterpenes synthesis. The expression of genes regulating several important enzymes in TBB was altered after fertilization. After the compost treatment, the expression of the leaf DXS gene (ACQ66107.1), being closely related to the sesquiterpene biosynthesis in P. bournei leaves, was decreased. Compost and compound fertilizer altered the expression of the two important branch-point enzymes (FPPS and GGPPS) genes (ART33314.1 and ATT59265.1), which contributed to the changes of the total amount and components of P. bournei sesquiterpenes. This study provides a new insight into the future use of P. bournei for Eos.


Assuntos
Sesquiterpenos , Transcriptoma , Fertilizantes , Sesquiterpenos/metabolismo , Fertilização
8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835160

RESUMO

Phoebe bournei is a rare and endangered plant endemic to China with higher-value uses in essential oil and structural wood production. Its seedlings are prone to death because of its undeveloped system. Paclobutrazol (PBZ) can improve root growth and development in certain plants, but its concentration effect and molecular mechanism remain unclear. Here, we studied the physiological and molecular mechanisms by which PBZ regulates root growth under different treatments. We found that, with moderate concentration treatment (MT), PBZ significantly increased the total root length (69.90%), root surface area (56.35%), and lateral root number (47.17%). IAA content was the highest at MT and was 3.83, 1.86, and 2.47 times greater than the control, low, and high-concentration treatments. In comparison, ABA content was the lowest and reduced by 63.89%, 30.84%, and 44.79%, respectively. The number of upregulated differentially expressed genes (DEGs) induced at MT was more than that of down-regulated DEGs, which enriched 8022 DEGs in response to PBZ treatments. WGCNA showed that PBZ-responsive genes were significantly correlated with plant hormone content and involved in plant hormone signal transduction and MAPK signal pathway-plant pathways, which controls root growth. The hub genes are observably associated with auxin, abscisic acid syntheses, and signaling pathways, such as PINs, ABCBs, TARs, ARFs, LBDs, and PYLs. We constructed a model which showed PBZ treatments mediated the antagonism interaction of IAA and ABA to regulate the root growth in P. bournei. Our result provides new insights and molecular strategies for solving rare plants' root growth problems.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Transdução de Sinais , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866859

RESUMO

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Assuntos
Secas , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas
10.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066995

RESUMO

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Assuntos
Glycine max , Sementes , Glycine max/metabolismo , Fenótipo , Sementes/genética , Sementes/metabolismo , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo
11.
World J Microbiol Biotechnol ; 39(7): 167, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37076579

RESUMO

Oudemansiella raphanipes is a type of fungus used as both medicine and food. Fungal polysaccharides have demonstrated various bioactivities, involving the adjust and control of gut microbiota, but no such studies on O. raphanipes polysaccharides (OrPs) have been reported. It is by extracting and purifying that OrPs was obtained from O. raphanipes crude polysaccharide and study their effects in mice. The sample contents of total sugar was 97.26%, and the monosaccharide content comprised mannose, rhamnose, glucose, and xylose in a molar ratio of 35.2:2.8:21.2:40.8. The effects of OrPs on body weight (BW), gut microbiota, fecal short-chain fatty acids (SCFAs), and the correlation between fecal SCFAs and gut microbes, in mice were investigated. The results of the experiment found that OrPs significantly (P < 0.01) inhibited the increase in BW, altered the constitution of the gut microbiota, and significantly (P < 0.05) enhanced the content of fecal SCFAs in mice. Moreover, among the top ten bacteria in terms of relative abundance, the Lachnospiraceae and Lachnospiraceae NK4A136 groups were positively associated with the increased production of SCFAs. Other bacteria, such as Atopobiaceae and Bifidobacterium of Actinobacteriota, and Faecalibaculum, Dubosiella, and Clostridium sensu stricto 5 of Firmicutes, were also positively associated with higher content of fecal SCFAs. The results of the experiment suggest that OrPs have a potential prebiotic effect on gut microbiota and may prevent BW gain. Furthermore, the major producers of SCFAs were Firmicutes and Actinobacteriota.


Assuntos
Agaricales , Microbioma Gastrointestinal , Camundongos , Animais , Prebióticos , Polissacarídeos/farmacologia , Bactérias , Ácidos Graxos Voláteis/farmacologia
12.
Curr Issues Mol Biol ; 44(7): 3194-3207, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35877445

RESUMO

Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.

13.
Invest New Drugs ; 40(6): 1322-1332, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36040572

RESUMO

Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-ß) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.


Assuntos
Proteína Morfogenética Óssea 2 , Fator de Crescimento Transformador beta , Humanos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular , Transdução de Sinais , Transição Epitelial-Mesenquimal
14.
Arch Microbiol ; 204(12): 694, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346465

RESUMO

Ginsenosides are the main active components of ginseng, including many types and different contents. Among them, minor ginsenosides have better biological functions and pharmacological activities than those of the major ginsenosides. However, minor ginsenosides cannot be obtained in large quantities, but by means of enzymatic transformation technology, some major ginsenosides can be de-glycosylated at a specific position to generate minor ginsenosides. In this study, we report two glycosidase genes associated with the conversion of ginsenoside Rd to ginsenosides F2 or CK. SWMU-CK-1 was identified among the total genes extracted from the feces of plum deer by local Blast screening for putative ginsenoside conversion function, which could cause the conversion of ginsenoside Rd → F2 → CK. The other gene was found in the Bifidobacterium breve 689b SGAir 0764 chromosome genome, which might have the same function as the ß-glucosidase gene testified by the gene matching, named SWMU-F2-2, and can achieve the Rd → F2 transformation. This study reports two genes that enable achieving the biotransformation of rare ginsenosides, while it provides a new insight and a promising approach to explore new genes and develop new functions of existing genes.


Assuntos
Cervos , Ginsenosídeos , Panax , Animais , Ginsenosídeos/metabolismo , Panax/genética , Panax/microbiologia , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Biotransformação , Metagenômica
15.
Proc Natl Acad Sci U S A ; 116(20): 9741-9746, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31010932

RESUMO

Sunlight drives photosynthesis and associated biological processes, and also influences inorganic processes that shape Earth's climate and geochemistry. Bacterial solar-to-chemical energy conversion on this planet evolved to use an intricate intracellular process of phototrophy. However, a natural nonbiological counterpart to phototrophy has yet to be recognized. In this work, we reveal the inherent "phototrophic-like" behavior of vast expanses of natural rock/soil surfaces from deserts, red soils, and karst environments, all of which can drive photon-to-electron conversions. Using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray absorption spectroscopy, Fe and Mn (oxyhydr)oxide-rich coatings were found in rock varnishes, as were Fe (oxyhydr)oxides on red soil surfaces and minute amounts of Mn oxides on karst rock surfaces. By directly fabricating a photoelectric detection device on the thin section of a rock varnish sample, we have recorded an in situ photocurrent micromapping of the coatings, which behave as highly sensitive and stable photoelectric systems. Additional measurements of red soil and powder separated from the outermost surface of karst rocks yielded photocurrents that are also sensitive to irradiation. The prominent solar-responsive capability of the phototrophic-like rocks/soils is ascribed to the semiconducting Fe- and Mn (oxyhydr)oxide-mineral coatings. The native semiconducting Fe/Mn-rich coatings may play a role similar, in part, to photosynthetic systems and thus provide a distinctive driving force for redox (bio)geochemistry on Earth's surfaces.

16.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361814

RESUMO

Cuticular waxes comprise the hydrophobic layer that protects crops against nonstomatal water loss and biotic and abiotic stresses. Expanding on our current knowledge of the genes that are involved in cuticular wax biosynthesis and regulation plays an important role in dissecting the processes of cuticular wax metabolism. In this study, we identified the Cer-GN1 barley (Hordeum vulgare L.) mutant that is generated by ethyl methanesulfonate mutagenesis with a glossy spike phenotype that is controlled by a single recessive nuclear gene. A physiological analysis showed that the total cuticular wax loads of Cer-GN1 were one-third that of the progenitor wild-type (WT), and its water loss rate was significantly accelerated (p < 0.05). In addition, Cer-GN1 was defective in the glume's cuticle according to the toluidine blue dye test, and it was deficient in the tubule-shaped crystals which were observed on the glume surfaces by scanning electron microscopy. Using metabolomics and transcriptomics, we investigated the impacts of cuticular wax composition and waxy regulatory genes on the loss of the glaucous wax in the spikes of Cer-GN1. Among the differential metabolites, we found that 16-hydroxyhexadecanoic acid, which is one of the predominant C16 and C18 fatty acid-derived cutin monomers, was significantly downregulated in Cer-GN1 when it was compared to that of WT. We identified two novel genes that are located on chromosome 4H and are downregulated in Cer-GN1 (HvMSTRG.29184 and HvMSTRG.29185) that encode long-chain fatty acid omega-monooxygenase CYP704B1, which regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid. A quantitative real-time PCR revealed that the expression levels of HvMSTRG.29184 and HvMSTRG.29185 were downregulated at 1, 4, 8, 12, and 16 days after the heading stage in Cer-GN1 when it was compared to those of WT. These results suggested that HvMSTRG.29184 and HvMSTRG.29185 have CYP704B1 activity, which could regulate the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley. Their downregulation in Cer-GN1 reduced the synthesis of the cuticular wax components and ultimately caused the loss of the glaucous wax in the spikes. It is necessary to verify whether HvMSTRG.29184 and HvMSTRG.29185 truly encode a CYP704B1 that regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Ácido Palmítico/metabolismo , Folhas de Planta/metabolismo , Ceras/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas
17.
New Phytol ; 231(2): 661-678, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864683

RESUMO

Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
18.
Eur Radiol ; 31(8): 5650-5658, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33449179

RESUMO

OBJECTIVES: The purpose of this study is to explore the predictors of moderate to severe ischemic mitral regurgitation (IMR) after myocardial infarction with cardiovascular magnetic resonance (CMR). METHODS: From January 2016 to September 2018, 109 patients (mean age 60 ± 8 years) with IMR were studied retrospectively. All patients underwent CMR-cine with True-FISP sequence and late gadolinium enhancement (LGE) with a phase-sensitive inversion recovery sequence. The presence of papillary muscle infarction (PMI), global left ventricular (LV) infarcted extent, LV functional parameters, and LV myocardial strain were assessed. Univariate and multivariate analyses were performed to identify factors in the development of moderate to severe IMR. RESULTS: Mild IMR was present in 61 patients (56%), and moderate to severe IMR was present in 48 patients (44%). PMI was identified in 22 patients (20.1%); 14 of them (63.63%) showed a moderate or severe IMR. Global LV infarcted extent was increased in patients with moderate to severe IMR (p < 0.001). LV functional parameters of patients with moderate to severe IMR were statistically different from those of the patients with mild IMR (all p < 0.001), except the LV SV index (p = 0.142) and LV CI (p = 0.447). The global longitudinal strain (GLS), regional radial strain (RS), and circumferential strain (CS) of the moderate-to-severe IMR group were significantly decreased compared with those of the mild IMR group (p < 0.05). In multivariable analyses, age (OR = 1.11; p = 0.001), global LV infarct extent (OR = 1.14; p = 0.000), and GLS (OR = 1.31; p = 0.000) were associated with moderate-to-severe chronic IMR. CONCLUSIONS: The incidence of PMI was higher in patients with moderate-to-severe IMR. The extent of global LV infarcted extent and GLS were independent predictors of moderate-to-severe IMR. KEY POINTS: • Cardiovascular magnetic resonance late gadolinium enhancement and feature-tracking imaging provide reliable information on LV function, myocardial viability, and papillary muscle morphology. • Papillary muscle infarction is not an independent predictor of moderate-to-severe IMR. • The extent of global LV infarction and LV global longitudinal strain were independent predictors of moderate-to-severe chronic IMR.


Assuntos
Insuficiência da Valva Mitral , Infarto do Miocárdio , Idoso , Meios de Contraste , Gadolínio , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/complicações , Insuficiência da Valva Mitral/diagnóstico por imagem , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Estudos Retrospectivos , Função Ventricular Esquerda
19.
BMC Pregnancy Childbirth ; 21(1): 148, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602166

RESUMO

BACKGROUND: In the entire population, an aberrant right subclavian artery (ARSA) is closely associated with chromosomal abnormalities. ARSA with additional ultrasonic findings would increase risk of chromosomal abnormalities. The risk of fetal chromosomal abnormalities increased exponentially with the maternal age. These risks in the advanced maternal age (AMA) group are uncertain. This study aimed to determine the incidence of ARSA in Chinese AMA and non-AMA women and the frequency of aneuploidy among AMA and non-AMA women with ARSA. METHODS: This retrospective study included 13,690 singleton pregnancies, were divided into AMA and non-AMA groups. Integrated obstetric ultrasonic screening, biochemical screening, noninvasive prenatal screening, and fetal karyotype analysis were analyzed. RESULTS: The overall incidence of ARSA was 0.69%, with no difference between age groups. The incidence of chromosomal abnormalities in the AMA group (37 / 2860) was much higher than that of the non-AMA group. The risk of chromosomal abnormalities significantly increased with both ARSA detected and additional ultrasound findings. With combined ARSA and AMA, the likelihood of the incidence of chromosomal abnormalities increased. Chimerism (45X / 46XX) was found with isolated ARSA in AMA pregnancies. CONCLUSION: There is a high prevalence of chromosomal abnormalities in fetuses of AMA women. ARSA increases the risk of chromosomal abnormalities in both age groups, especially combined with ARSA. When ARSA occurs in AMA women, it confers a high likelihood of chromosomal abnormalities.


Assuntos
Aneuploidia , Anormalidades Cardiovasculares/diagnóstico por imagem , Aberrações Cromossômicas , Artéria Subclávia/anormalidades , Adulto , Anormalidades Cardiovasculares/epidemiologia , Feminino , Humanos , Incidência , Cariotipagem , Idade Materna , Gravidez , Segundo Trimestre da Gravidez , Estudos Retrospectivos , Fatores de Risco , Artéria Subclávia/diagnóstico por imagem , Ultrassonografia Pré-Natal , Adulto Jovem
20.
Xenobiotica ; 51(3): 366-372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33256506

RESUMO

Breviscapine (BRE) is usually used for long-term use in patients with cardiovascular diseases such as coronary heart disease, angina pectoris, and cerebral thrombosis. It is possible to combine it with P-glycoprotein (P-gp) substrates in clinic. At present, little is known about whether the simultaneous use of BRE affects the disposal of P-gp substrates. The aim of this study was to evaluate the effect of BRE on the pharmacokinetics of fexofenadine (FEX), a P-gp probe substrate and its associations with the MDR1 C3435T genetic polymorphism in healthy volunteers. In this randomised, open-label, placebo-controlled, two-phase crossover clinical study, drug interactions were evaluated in healthy volunteers. FEX was used as a phenotypic probe for P-gp. In each phase, 18 volunteers were given daily doses of 120 mg (40 mg, three times a day) of BRE tablet or a placebo for 14 days. On day 15, a single oral dose of 120 mg FEX hydrochloride was given orally. Blood samples were collected at predefined time intervals, and plasma levels of FEX were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The pharmacokinetic parameters were calculated by non-compartmental method, and bioequivalence was evaluated. Results showed that BRE pretreatment did not significantly affect the pharmacokinetics of FEX. The peak maximum plasma concentration (C max) and the area under the plasma concentration-time curve from zero to infinity (AUCinf) mean value of FEX with BRE and placebo-treated groups were 699 ng/mL vs. 710 ng/mL and 2972.5 ng⋅h/mL vs. 3460.5 ng⋅h/mL, respectively. The geometric mean ratios (90% confidence intervals) for FEX C max and AUCinf were within the pre-specified range of 0.8-1.25, indicating that FEX in the two pretreatment phases were bioequivalent. Pharmacokinetic parameters of FEX showed no statistically significant difference between MDR1 C3435T CC, CT and TT genotype, revealing that BRE and MDR1 C3435T gene polymorphisms did not affect the pharmacokinetics of FEX in healthy volunteers.


Assuntos
Flavonoides/farmacologia , Polimorfismo Genético , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Área Sob a Curva , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Espectrometria de Massas em Tandem , Terfenadina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA