RESUMO
Climate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long-term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short-term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.
Assuntos
Mudança Climática , Solo , Biomassa , Tempo (Meteorologia) , Árvores , PlantasRESUMO
Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.
Assuntos
Sequestro de Carbono , Sphagnopsida , Ecossistema , Solo , CarbonoRESUMO
Methane (CH4 ) emissions from northern peatlands are projected to increase due to climate change, primarily because of projected increases in soil temperature. Yet, the rates and temperature responses of the two CH4 emission-related microbial processes (CH4 production by methanogens and oxidation by methanotrophs) are poorly known. Further, peatland sites within a fen-bog gradient are known to differ in the variables that regulate these two mechanisms, yet the interaction between peatland type and temperature lacks quantitative understanding. Here, we investigated potential CH4 production and oxidation rates for 14 peatlands in Finland located between c. 60 and 70°N latitude, representing bogs, poor fens, and rich fens. Potentials were measured at three different temperatures (5, 17.5, and 30â) using the laboratory incubation method. We linked CH4 production and oxidation patterns to their methanogen and methanotroph abundance, peat properties, and plant functional types. We found that the rich fen-bog gradient-related nutrient availability and methanogen abundance increased the temperature response of CH4 production, with rich fens exhibiting the greatest production potentials. Oxidation potential showed a steeper temperature response than production, which was explained by aerenchymous plant cover, peat water holding capacity, peat nitrogen, and sulfate content. The steeper temperature response of oxidation suggests that, at higher temperatures, CH4 oxidation might balance increased CH4 production. Predicting net CH4 fluxes as an outcome of the two mechanisms is complicated due to their different controls and temperature responses. The lack of correlation between field CH4 fluxes and production/oxidation potentials, and the positive correlation with aerenchymous plants points toward the essential role of CH4 transport for emissions. The scenario of drying peatlands under climate change, which is likely to promote Sphagnum establishment over brown mosses in many places, will potentially reduce the predicted warming-related increase in CH4 emissions by shifting rich fens to Sphagnum-dominated systems.
Assuntos
Sphagnopsida , Áreas Alagadas , Finlândia , Metano/análise , SoloRESUMO
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2 ) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.
Assuntos
Ciclo do Carbono , Dióxido de Carbono , Aquecimento Global , Regiões Árticas , Dióxido de Carbono/análise , Ecossistema , Água Subterrânea , Fotossíntese , Solo , Áreas AlagadasRESUMO
Climate change and the associated increased frequency of extreme weather events are likely to alter the emissions of biogenic volatile organic compounds (BVOCs) from boreal peatlands. Hydrologically sensitive Sphagnum mosses are keystone species in boreal peatland ecosystems that are known to emit various BVOCs. However, it is not known how their emissions respond to seasonal droughts. In this study, we quantified the effect of severe drought, and subsequent recovery, on the BVOC emissions from Sphagnum mosses using mesocosms originating from wet open and naturally drier treed boreal fens and bogs. Here we report the emissions of 30 detected BVOCs, of which isoprene was the most abundant with an average flux rate of 5.6 µg m-2 h-1 (range 0-31.9 µg m-2 h-1). The experimental 43-day ecohydrological drought reduced total BVOC and isoprene emissions. In addition, in mesocosms originating from bogs, sesquiterpene emissions decreased with the drought, while the emissions of green leaf volatiles were induced. Sesquiterpene emissions remained low even six weeks after rewetting, indicating a long and limited recovery from the drought. Our results further imply that long-term exposure to deep water tables does not decrease sensitivity of Sphagnum to an extreme drought; we did not detect differences in the emission rates or drought responses between Sphagna originating from wet open and naturally drier treed habitats. Yet, the differences between fen and bog originating Sphagna indicate local variability in the BVOC quality changes following drought, potentially altering the climate feedback of boreal peatland BVOC emissions.
Assuntos
Mudança Climática , Secas , Monitoramento Ambiental , Sphagnopsida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Áreas Alagadas , Taiga , Butadienos , HemiterpenosRESUMO
Plant-mediated CH4 transport (PMT) is the dominant pathway through which soil-produced CH4 can escape into the atmosphere and thus plays an important role in controlling ecosystem CH4 emission. PMT is affected by abiotic and biotic factors simultaneously, and the effects of biotic factors, such as the dominant plant species and their traits, can override the effects of abiotic factors. Increasing evidence shows that plant-mediated CH4 fluxes include not only PMT, but also within-plant CH4 production and oxidation due to the detection of methanogens and methanotrophs attached to the shoots. Despite the inter-species and seasonal differences, and the probable contribution of within-plant microbes to total plant-mediated CH4 exchange (PME), current process-based ecosystem models only estimate PMT based on the bulk biomass or leaf area index of aerenchymatous plants. We highlight five knowledge gaps to which more research efforts should be devoted. First, large between-species variation, even within the same family, complicates general estimation of PMT, and calls for further work on the key dominant species in different types of wetlands. Second, the interface (rhizosphere-root, root-shoot, or leaf-atmosphere) and plant traits controlling PMT remain poorly documented, but would be required for generalizations from species to relevant functional groups. Third, the main environmental controls of PMT across species remain uncertain. Fourth, the role of within-plant CH4 production and oxidation is poorly quantified. Fifth, the simplistic description of PMT in current process models results in uncertainty and potentially high errors in predictions of the ecosystem CH4 flux. Our review suggest that flux measurements should be conducted over multiple growing seasons and be paired with trait assessment and microbial analysis, and that trait-based models should be developed. Only then we are capable to accurately estimate plant-mediated CH4 emissions, and eventually ecosystem total CH4 emissions at both regional and global scales.
Assuntos
Ecossistema , Áreas Alagadas , Plantas/metabolismo , Biomassa , Metano/análise , Dióxido de Carbono/análise , SoloRESUMO
After drainage for forestry and agriculture, peat extraction is one of the most important causes of peatland degradation. When peat extraction is ceased, multiple after-use options exist, including abandonment, restoration, and replacement (e.g., forestry and agricultural use). However, there is a lack of a global synthesis of after-use research. Through a systematic review of 356 peer-reviewed scientific articles, we address this research gap and examine (1) what after-use options have been studied, (2) what the studied and recognized impacts of the after-use options are, and (3) what one can learn in terms of best practices and research gaps. The research has concentrated on the impacts of restoration (N = 162), abandonment (N = 72), and replacement (N = 94), the latter of which consists of afforestation (N = 46), cultivation (N = 34) and creation of water bodies (N = 14). The studies on abandonment, restoration, and creation of water bodies have focused mostly on analyzing vegetation and greenhouse gas (GHG) fluxes, while the studies assessing afforestation and cultivation sites mostly evaluate the provisioning ecosystem services. The studies show that active restoration measures speed-up vegetation recolonization on bare peat areas, reduce GHG emissions and decrease negative impacts on water systems. The most notable research gap is the lack of studies comparing the environmental and social impacts of the after-use options. Additionally, there is a lack of studies focusing on social impacts and downstream hydrology, as well as long-term monitoring of GHG fluxes. Based on the reviewed studies, a comparison of the impacts of the after-use options is not straightforward. We emphasize a need for comparative empirical research in the extracted sites with a broad socio-ecological and geographical context.
Assuntos
Gases de Efeito Estufa , Solo , Ecossistema , Mudança Social , Hidrologia , BiodiversidadeRESUMO
Peatlands constitute a significant soil carbon (C) store, yet the C gas flux components show distinct spatial variation both between and within peatlands. Determining the controls on this variability could aid in our understanding of the response of peatlands to global changes. In this study, we assess the usefulness of different vegetation related parameters to explain spatial variation in peatland C gas flux components. We hypothesise that spatial variation is best explained by trait-based indices (similarly to other terrestrial ecosystems), and that the impact of soil physicochemical properties, such as nitrogen (N) content or water level, can be manifested through the traits. Furthermore, we expect that the spatial variability associated with each of the C gas flux components can be explained by a distinct set of traits. To address our aim, we used a successional peatland chronosequence from wet meadows to a bog, along which all variables were recorded with similar methods and under similar climatic conditions. We observed spatial variability with all measured gas fluxes, with carbon dioxide (CO2) fluxes showing significant variability between sites, while within site variability was more important for methane (CH4) fluxes. As expected, our results show that the impacts of physicochemical conditions were directed via vegetation. However, the cover of functional plant types that capture multiple traits proved to be more powerful in explaining gas flux variability compared to functional trait-based indices. Our findings imply that for future gas flux modelling purposes, rather than attempting to use individual traits - as is the ongoing trend in ecology - it might be more useful to refine plant functional groupings and ensure they are based on a set of plant traits relevant for the studied ecosystem process. This could be facilitated by the collation of a large data set of traits measured from peatlands.
Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/análise , Metano , Plantas , Solo , Áreas AlagadasRESUMO
Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.
Assuntos
Carbono , Solo , Carbono/química , Solo/química , Áreas Alagadas , NitrogênioRESUMO
Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO(2) assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO(2) exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F(v)/F(m)). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous to the three primary strategies suggested by Grime.
Assuntos
Fotossíntese , Sphagnopsida/crescimento & desenvolvimento , Sphagnopsida/metabolismo , Áreas Alagadas , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Finlândia , Fluorescência , Estações do Ano , Especificidade da Espécie , Fatores de TempoRESUMO
Calcareous spring fens are among the rarest and most endangered wetland types worldwide. The majority of these ecosystems can be found at high latitudes, where they are affected by above average rates of climate change. Particularly winter temperatures are increasing, which results in decreased snow cover. As snow provides an insulating layer that protects ecosystems from subzero temperatures, its decrease is likely to induce stress to plants. To investigate the sensitivity of the bryophyte community - key to the functioning of calcareous spring fens - to changing climatic conditions, we studied the annual variation in ecophysiology of two dominant bryophytes: Campylium stellatum and Scorpidium scorpioides. Further, a snow removal experiment was used to simulate the effect of changing winter conditions. In both species, we observed lowest efficiency of photosystem II (Fv/Fm) in spring, indicating physiological stress, and highest chlorophyll-a, -b and carotenoid concentrations in autumn. Snow removal exacerbated physiological stress in bryophytes. Consequently Fv/Fm, pigment concentrations and chlorophyll to carotenoids ratios declined, while chlorophyll-a to -b ratios increased. Moreover, these effects of winter climate change cascaded to the growing season. C. stellatum, a low hummock inhabitor, suffered more from snow removal (annual mean decline in Fv/Fm 7.7% and 30.0% in chlorophyll-a) than S. scorpioides, a hollow species (declines 5.4% and 14.5%, respectively). Taken together, our results indicate that spring fen bryophytes are negatively impacted by winter climate change, as a result of longer frost periods and increased numbers of freeze-thaw cycles in combination with higher light intensity and dehydration.
Assuntos
Briófitas/fisiologia , Mudança Climática , Estresse Fisiológico/fisiologia , Clorofila/análogos & derivados , Ecossistema , Congelamento , Plantas , Estações do Ano , Neve , TemperaturaRESUMO
Young coastal fens are rare ecosystems in the first stages of peatland succession. Their drainage compromises their successional development toward future carbon (C) reservoirs. We present the first study on the success of hydrological restoration of young fens. We carried out vegetation surveys at six young fens that represent undrained, drained, and restored management categories in the Finnish land uplift coast before and after restoration. We measured plant level carbon dioxide (CO2) assimilation and chlorophyll fluorescence (Fv/Fm) from 17 most common plant species present at the sites. Within 5 years of restoration, the vegetation composition of restored sites had started to move toward the undrained baseline. The cover of sedges increased the most in response to restoration, while the cover of deciduous shrubs decreased the most. The rapid response indicates high resilience and low resistance of young fen ecosystems toward changes in hydrology. Forbs had higher photosynthetic and respiration rates than sedges, deciduous shrubs, and grasses, whereas rates were lowest for evergreen shrubs and mosses. The impact of management category on CO2 assimilation was an indirect consequence that occurred through changes in plant species composition: Increase in sedge cover following restoration also increased the potential photosynthetic capacity of the ecosystem. Synthesis and applications. Restoration of forestry drained young fens is a promising method for safeguarding them and bringing back their function as C reservoirs. However, their low resistance to water table draw down introduces a risk that regeneration may be partially hindered by the heavy drainage in the surrounding landscape. Therefore, restoration success is best safeguarded by managing the whole catchments instead of carrying out small-scale projects.