Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(5): 684-696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924232

RESUMO

BACKGROUND: Adaptation of fat depots to change in fuel availability is critical for metabolic flexibility and cardiometabolic health. The mechanisms responsible for fat depot-specific lipid sensing and shuttling remain elusive. Adipose tissue microvascular endothelial cells (AT-EC) regulates bidirectional fatty acid fluxes depending on fed or fasted state. How AT-EC sense and adapt to metabolic changes according to AT location remains to be established. METHODS: We combined transcriptional analysis of native human AT-EC together with in vitro approaches in primary human AT-EC and in vivo and ex vivo studies of mice under fed and fasted conditions. RESULTS: Transcriptional large-scale analysis of human AT-EC isolated from gluteofemoral and abdominal subcutaneous AT revealed that the endothelium exhibits a fat depot-specific signature associated with lipid handling and Notch signaling enrichment. We uncovered a functional link between metabolic status and endothelial DLL4 (delta-like canonical notch ligand 4), which decreases with fasting. DLL4 regulates fatty acid uptake through nontranscriptional modulation of macropinocytosis-dependent long chain fatty acid uptake. Importantly, the changes in DLL4 expression, in response to energy transition state, is impaired under obesogenic conditions, an early alteration coinciding with a defect in systemic fatty acid fluxes adaptation and a resistance to weight loss. CONCLUSIONS: DLL4 is a major actor in the adaptive mechanisms of AT-EC to regulate lipid fluxes. It likely contributes to fat depot-dependent metabolism in response to energy transition states. AT-EC alteration with obesity may favor metabolic inflexibility and the development of cardiometabolic disorders.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Jejum , Endotélio/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Br J Pharmacol ; 180(21): 2802-2821, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37351910

RESUMO

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a cardiovascular disease characterised by an increase in pulmonary arterial (PA) resistance leading to right ventricular (RV) failure. Reactive oxygen species (ROS) play a major role in PH. OP2113 is a drug with beneficial effects on cardiac injuries that targets mitochondrial ROS. The aim of the study was to address the in vivo therapeutic effect of OP2113 in PH. EXPERIMENTAL APPROACH: PH was induced by 3 weeks of chronic hypoxia (CH-PH) in rats treated with OP2113 or its vehicle via subcutaneous osmotic mini-pumps. Haemodynamic parameters and both PA and heart remodelling were assessed. Reactivity was quantified in PA rings and in RV or left ventricular (LV) cardiomyocytes. Oxidative stress was detected by electron paramagnetic resonance and western blotting. Mitochondrial mass and respiration were measured by western blotting and oxygraphy, respectively. KEY RESULTS: In CH-PH rats, OP2113 reduced the mean PA pressure, PA remodelling, PA hyperreactivity in response to 5-HT, the contraction slowdown in RV and LV and increased the mitochondrial mass in RV. Interestingly, OP2113 had no effect on haemodynamic parameters, both PA and RV wall thickness and PA reactivity, in control rats. Whereas oxidative stress was evidenced by an increase in protein carbonylation in CH-PH, this was not affected by OP2113. CONCLUSION AND IMPLICATIONS: Our study provides evidence for a selective protective effect of OP2113 in vivo on alterations in both PA and RV from CH-PH rats without side effects in control rats.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Ratos , Animais , Hipertensão Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ventrículos do Coração/metabolismo , Artéria Pulmonar , Insuficiência Cardíaca/metabolismo , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Disfunção Ventricular Direita/metabolismo , Função Ventricular Direita , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA