Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(9): 2252-2270, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799008

RESUMO

Infectious diseases of wildlife continue to pose a threat to biodiversity worldwide, yet pathogens are far from uniform in virulence or host disease outcome. Within the same pathogen species, virulence can vary considerably depending on strain or lineage, in turn eliciting variable host responses. One pathogen that has caused extensive biodiversity loss is the amphibian-killing fungus, Batrachochytrium dendrobatidis (Bd), which is comprised of a globally widespread hypervirulent lineage (Bd-GPL), and multiple geographically restricted, enzootic lineages. Whereas host immunogenomic responses to Bd-GPL have been characterized in a number of amphibian species, immunogenomic responses to geographically restricted, enzootic Bd lineages are less clear. To examine lineage-specific host immune responses to Bd, we exposed a species of pumpkin toadlet, Brachycephalus pitanga, which is endemic to Brazil's Southern Atlantic Forest, to either the Bd-GPL or the enzootic Bd-Asia-2/Brazil (hereafter Bd-Brazil) lineage. Using temporal samples from early, mid, and late infection stages, we quantified functional immunogenomic responses over the course of infection using differential gene expression tests and coexpression network analyses. Host immune responses varied significantly with Bd lineage. Relative to controls, toadlet responses to Bd-Brazil were weak at early infection (25 genes significantly differentially expressed), peaked by mid-stage infection (414 genes), and were nearly fully resolved by late-stage infection (nine genes). In contrast, responses to Bd-GPL were magnified and delayed; toadlets significantly differentially expressed 111 genes early, 87 genes at mid-stage infection, and 726 genes by late-stage infection relative to controls. Given that infection intensity did not vary between mid- and late-stage disease in either Bd-Brazil or Bd-GPL treatments, this suggests that pumpkin toadlets may be at least partially tolerant to the enzootic Bd-Brazil lineage. In contrast, late-stage immune activation against Bd-GPL was consistent with immune dysregulation previously observed in other species. Our results demonstrate that both the timing of immune response and the particular immune pathways activated are specific to Bd lineage. Within regions where multiple Bd lineages co-occur, and given continued global Bd movement, these differential host responses may influence not only individual disease outcome, but transmission dynamics at the population and community levels.


Assuntos
Quitridiomicetos , Micoses , Animais , Micoses/microbiologia , Anfíbios/microbiologia , Anuros/genética , Anuros/microbiologia , Animais Selvagens , Batrachochytrium
2.
Dis Aquat Organ ; 149: 53-58, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510821

RESUMO

Amphibians breeding in aquatic environments may encounter a myriad of threats during their life cycle. One species known to prey on native amphibians in aquatic habitats is the invasive North American bullfrog Lithobates catesbeianus, which, besides being a voracious predator and competitor, often acts as a pathogen carrier and disease superspreader because it tolerates high infection loads of the frog-killing fungus Batrachochytrium dendrobatidis (Bd). Here, we hypothesized that the presence of the bullfrogs in microcosms should either (1) decrease Bd disease severity in native frog species by discouraging them from using the aquatic environment, or (2) increase the mortality of the native species. We tested these 2 mutually exclusive hypotheses by co-housing the snouted treefrog Scinax x-signatus (native to our study area) with L. catesbeianus in the laboratory, exposing them to Bd, and using qPCR analysis to quantify the resulting Bd infection loads in the native frogs. Our experiment had the following replicated treatments: (1) native-only treatment (3 individuals of S. x-signatus), (2) native-predominant treatment (2 S. x-signatus + 1 L. catesbeianus), and (3) exotic-predominant treatment (1 S. x-signatus + 2 L. catesbeianus). We found that Bd infection loads in the native S. x-signatus were highest in the native-only treatment, and lowest in the exotic-predominant treatment, indicating that bullfrogs may discourage native frogs from occupying the aquatic habitat, thus reducing encounter rates between native frogs and the waterborne pathogen. This effect could be driven by the bullfrogs' predatory behavior and their high philopatry to aquatic habitats. Our results highlight that predation risk adds to the complexity of host-species interactions in Bd epidemiology.


Assuntos
Batrachochytrium/patogenicidade , Micoses/veterinária , Rana catesbeiana/microbiologia , Rana catesbeiana/fisiologia , Animais , Anuros/microbiologia , Ecossistema , Micoses/microbiologia , Micoses/mortalidade , Estados Unidos
3.
Dis Aquat Organ ; 152: 115-125, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519683

RESUMO

Infectious diseases are one of the main threats to biodiversity. The fungus Batrachochytrium dendrobatidis (Bd) is associated with several amphibian losses around the globe, and environmental conditions may dictate the success of pathogen spread. The Brazilian Amazon has been considered climatically unsuitable for chytrid fungus, but additional information on Bd dynamics in this ecoregion is still lacking. We sampled 462 amphibians (449 anurans, 4 caudatans and 9 caecilians), representing 57 species from the Brazilian Amazon, and quantified Bd infections using qPCR. We tested whether abiotic variables predicted the risk of Bd infections, and tested for relationships between biotic variables and Bd. Finally, we experimentally tested the effects of Bd strains CLFT 156 and CLFT 102 (from the southern and northern Atlantic Forest, respectively) on Atelopus manauensis. We detected higher Bd prevalence than those previously reported for the Brazilian Amazon, and positive individuals in all 3 orders of amphibians sampled. Both biotic and abiotic predictors were related to prevalence, and no variable explained infection load. Moreover, we detected higher Bd prevalence in forested than open areas, while the host's reproductive biology was not a factor. We detected higher mortality in the experimental group infected with CLFT 156, probably because this strain was isolated from a region characterized by discrepant climatic conditions (latitudinally more distant) when compared with the host's sampling site in Amazon. The lowland Brazilian Amazon is still underexplored and future studies targeting all amphibian orders are essential to better understand Bd infection dynamics in this region.


Assuntos
Quitridiomicetos , Micoses , Animais , Anfíbios/microbiologia , Anuros/microbiologia , Biodiversidade , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia
4.
Dis Aquat Organ ; 144: 99-106, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830073

RESUMO

Environmental variation along elevational gradients shapes conditions for pathogen development, which influences disease outcomes. Chytridiomycosis is a non-vectored disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd) and is responsible for massive declines of amphibian populations all over the world. Several biotic and abiotic factors are known to influence Bd infection dynamics in amphibians, including temperature and host species richness. Here, we quantified Bd prevalence and load along an elevational gradient in the Caparaó National Park (CNP), Brazil, and tested for associations of Bd infections with elevation, temperature, and species richness. We hypothesized that Bd infections would increase as local species richness decreased with elevation. We detected Bd along the entire elevational gradient and found a negative association between infection load and elevation. We did not detect significant associations between infection prevalence and elevation. Our findings are consistent with other wide elevational gradient studies, but are contrary to 2 other studies performed in the Atlantic Forest. We did not find the minimum elevational range that should be sampled to detect the influence of elevation on Bd variation. Our study represents the widest elevational gradient that has been sampled in Brazil and contributes to a better understanding of Bd distribution and dynamics in natural systems.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Brasil/epidemiologia , Florestas , Micoses/epidemiologia , Micoses/veterinária
5.
Dis Aquat Organ ; 145: 79-88, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137378

RESUMO

Chytridiomycosis, an emergent infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), is considered one of the drivers of the current amphibian biodiversity loss. To inform endangered species conservation efforts, it is essential to improve our knowledge about the abiotic and biotic factors that influence Bd infection dynamics in the wild. Here, we analyzed variation of Bd infection in the redbelly toad Melanophryniscus montevidensis, a threatened bufonid from Uruguay. We tested the influence of temperature, precipitation, season, and host population size on Bd prevalence and intensity. Additionally, considering the sub-lethal effects of Bd, we tested if these variables, potentially through their effect on Bd, also explain the variation in host body condition. We determined a high Bd prevalence of 41% (100/241), and that population size influenced both Bd prevalence and infection intensity. We identified an effect of precipitation and season on Bd infection intensity and an effect of season on toad body condition. In addition, we found a negative effect of infection intensity on body condition; moreover, while some toads cleared the infection, their body condition did not improve, suggesting a long-term cost. This is the first report on host population size as an important factor in Bd infection dynamics in a threatened anuran species, and seasonal demographic changes appear to play an important role in the dynamics. Finally, we highlight the need for monitoring Bd in this and other endangered amphibian populations, especially those within the genus Melanophryniscus, which includes several Endangered and Data Deficient species in South America.


Assuntos
Quitridiomicetos , Animais , Batrachochytrium , Bufonidae , Espécies em Perigo de Extinção , Estações do Ano , América do Sul , Uruguai/epidemiologia
6.
Oecologia ; 193(1): 237-248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32314042

RESUMO

Ecologists studying emerging wildlife diseases need to confront the realism of imperfect pathogen detection across heterogeneous habitats to aid in conservation decisions. For example, spatial risk assessments of amphibian disease caused by Batrachochytrium dendrobatidis (Bd) has largely ignored imperfect pathogen detection across sampling sites. Because changes in pathogenicity and host susceptibility could trigger recurrent population declines, it is imperative to understand how pathogen prevalence and occupancy vary across environmental gradients. Here, we assessed how Bd occurrence, prevalence, and infection intensity in a diverse Neotropical landscape vary across streams in relation to abiotic and biotic predictors using a hierarchical Bayesian model that accounts for imperfect Bd detection caused by qPCR error. Our model indicated that the number of streams harboring Bd-infected frogs is higher than observed, with Bd likely being present at ~ 43% more streams than it was detected. We found that terrestrial-breeders captured along streams had higher Bd prevalence, but lower infection intensity, than aquatic-breeding species. We found a positive relationship between Bd occupancy probability and stream density, and a negative relationship between Bd occupancy probability and amphibian local richness. Forest cover was a weak predictor of Bd occurrence and infection intensity. Finally, we provide estimates for the minimum number of amphibian captures needed to determine the presence of Bd at a given site where Bd occurs, thus, providing guidence for cost-effective disease risk monitoring programs.


Assuntos
Quitridiomicetos , Rios , Anfíbios , Animais , Anuros , Teorema de Bayes , Ecossistema
7.
Dis Aquat Organ ; 142: 177-187, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331285

RESUMO

Amphibians have been facing a pandemic caused by the deadly fungus Batrachochytrium dendrobatidis (Bd). Although studies have elucidated cutaneous and homeostatic disturbances, it is still unknown if the hepatic function can be affected or if hepatic effects differ among host species. Thus, we evaluated the effects of an experimental Bd infection on the liver (histopathology and the hepatosomatic index) of 2 anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to Bd infection and compared them to uninfected controls. Bd infection increased the melanomacrophage cell area and induced leukocyte infiltration in both species. The effects were more pronounced in the sensitive species, P. albonotatus, which showed severe reduction in glycogen stores and liver atrophy, due to energetic imbalance. Hepatocytes of P. albonotatus also showed ballooning degeneration (vacuolization), which could lead to cell death and liver failure. Our results provide evidence that although the sensitive species showed more severe effects, the tolerant species also had hepatic responses to the infection. These findings indicate that hepatic function can play an important role in detoxification and in immune responses to chytridiomycosis, and that it may be used as a new biomarker of health status in chytrid infections.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Anuros , Suscetibilidade a Doenças/veterinária , Fígado , Micoses/veterinária
8.
Proc Biol Sci ; 286(1908): 20191114, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409249

RESUMO

Wildlife disease dynamics are strongly influenced by the structure of host communities and their symbiotic microbiota. Conspicuous amphibian declines associated with the waterborne fungal pathogen Batrachochytrium dendrobatidis (Bd) have been observed in aquatic-breeding frogs globally. However, less attention has been given to cryptic terrestrial-breeding amphibians that have also been declining in tropical regions. By experimentally manipulating multiple tropical amphibian assemblages harbouring natural microbial communities, we tested whether Bd spillover from naturally infected aquatic-breeding frogs could lead to Bd amplification and mortality in our focal terrestrial-breeding host: the pumpkin toadlet Brachycephalus pitanga. We also tested whether the strength of spillover could vary depending on skin bacterial transmission within host assemblages. Terrestrial-breeding toadlets acquired lethal spillover infections from neighbouring aquatic hosts and experienced dramatic but generally non-protective shifts in skin bacterial composition primarily attributable to their Bd infections. By contrast, aquatic-breeding amphibians maintained mild Bd infections and higher survival, with shifts in bacterial microbiomes that were unrelated to Bd infections. Our results indicate that Bd spillover from even mildly infected aquatic-breeding hosts may lead to dysbiosis and mortality in terrestrial-breeding species, underscoring the need to further investigate recent population declines of terrestrial-breeding amphibians in the tropics.


Assuntos
Anuros/microbiologia , Quitridiomicetos/fisiologia , Longevidade , Microbiota , Micoses/veterinária , Animais , Brasil , Micoses/microbiologia , Pele/microbiologia
9.
Dis Aquat Organ ; 124(2): 109-116, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425424

RESUMO

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) is linked to population declines in anurans and salamanders globally. To date, however, few studies have attempted to screen Bd in live caecilians; Bd-positive caecilians have only been reported in Africa and French Guiana. Here, we performed a retrospective survey of museum preserved specimens to (1) describe spatial patterns of Bd infection in Gymnophiona across South America and (2) test whether areas of low climatic suitability for Bd in anurans predict Bd spatial epidemiology in caecilians. We used quantitative PCR to detect Bd in preserved caecilians collected over a 109 yr period, and performed autologistic regressions to test the effect of bioclimatic metrics of temperature and precipitation, vegetation density, and elevation on the likelihood of Bd occurrence. We detected an overall Bd prevalence of 12.4%, with positive samples spanning the Uruguayan savanna, Brazil's Atlantic Forest, and the Amazon basin. Our autologistic models detected a strong effect of macroclimate, a weaker effect of vegetation density, and no effect of elevation on the likelihood of Bd occurrence. Although most of our Bd-positive records overlapped with reported areas of high climatic suitability for the fungus in the Neotropics, many of our new Bd-positive samples extend far into areas of poor suitability for Bd in anurans. Our results highlight an important gap in the study of amphibian chytridiomycosis: the potential negative impact of Bd on Neotropical caecilians and the hypothetical role of caecilians as Bd reservoirs.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/isolamento & purificação , Animais , Brasil/epidemiologia , Uruguai/epidemiologia
10.
Dis Aquat Organ ; 114(1): 61-7, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25958806

RESUMO

The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Floresta Úmida , Animais , Brasil/epidemiologia , Micoses/epidemiologia , Micoses/microbiologia
11.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25297867

RESUMO

The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.


Assuntos
Anuros , Biodiversidade , Quitridiomicetos/fisiologia , Interações Hospedeiro-Patógeno , Micoses/veterinária , Animais , Brasil , Conservação dos Recursos Naturais , Micoses/microbiologia
12.
Sci Rep ; 10(1): 22311, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339839

RESUMO

In Brazil's Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host-pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host-pathogen interactions in the AF.


Assuntos
Batrachochytrium/genética , Microbiota/genética , Micoses/microbiologia , Pele/microbiologia , Animais , Anuros/microbiologia , Batrachochytrium/patogenicidade , Biodiversidade , Brasil , Florestas , Interações entre Hospedeiro e Microrganismos/genética
13.
PeerJ ; 6: e5891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425891

RESUMO

BACKGROUND: Understanding of the physiological effects of chytridiomycosis is crucial to worldwide amphibian conservation. Therefore, we analyzed the cardiac function of two anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to infection by the causative agent of chytridiomycosis, Batrachochytrium dendrobatidis (hereafter Bd). METHODS: We analyzed the in situ heart rate (f H - bpm), relative ventricular mass (RVM -%), and Ca2+ handling in heart of Bd infected animals compared to uninfected controls of both study species. RESULTS: Bd infection resulted in a 78% decrease in contraction force values in P. albonotatus when compared to the less susceptible X. laevis. This negative effect was even more evident (82%) for the cardiac pumping capacity. The time to reach peak tension was 125% longer in P. albonotatus than in X. laevis, and cardiac relaxation was 57% longer. DISCUSSION: These results indicate a delay in the cardiac cycle of P. albonotatus on a beat-to-beat basis, which was corroborated by the bradycardia observed in situ. In summary, Bd-sensitive species present impaired cardiac function, which could be a factor in mortality risk. The more pronounced effects of Bd in P. albonotatus may not only result from electrolyte imbalance, as previously reported, but also could be an effect of toxins produced by Bd. For X. laevis, the ability to promote cardiac adjustments seems to be an important homeostatic feature that allows greater tolerance to chytridiomycosis. This study provides new physiological mechanisms underlying the tolerance or susceptibility of amphibian species to chytridiomycosis, which determine their adaptability to survive in the affected environments.

14.
Sci Rep ; 8(1): 7772, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773857

RESUMO

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/isolamento & purificação , Espécies em Perigo de Extinção , Animais , Disseminação de Informação , Larva/microbiologia , Software
15.
Sci Rep ; 7(1): 16605, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192210

RESUMO

Host-generalist pathogens sporadically infect naive hosts, potentially triggering epizootics. The waterborne fungus Batrachochytrium dendrobatidis (Bd) is linked to declines of hundreds of amphibian species with aquatic larvae. Although several population declines and extinctions attributed to Bd have been reported among cryptic species undergoing direct development away from water, epidemiological studies focused on these terrestrial frogs are lacking. Our field data support that terrestrial direct-developing hosts are less exposed to Bd during their ontogeny than species with aquatic larvae, and thus they might lack adaptive responses against waterborne chytrids. Using controlled laboratory experiments, we exposed wild-caught amphibian species with terrestrial and aquatic life histories to Bd and found that direct developers showed more rapid increases in infection loads and experienced higher mortality rates than species with aquatic larvae. Our findings provide novel information about host responses to generalist pathogens and specifically show that our focal direct developing species have low resistance to Bd infections. Finally, our results underscore that we should not ignore Bd as a potential threat to direct developing species simply because they are less exposed to Bd in nature; instead future amphibian conservation plans should include efforts to safeguard hundreds of direct-developing amphibian species globally.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos , Resistência à Doença , Interações Hospedeiro-Patógeno , Animais , Larva , Mortalidade , Análise de Sobrevida
16.
PLoS One ; 10(7): e0130554, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161777

RESUMO

Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae). At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd); therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis) on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation.


Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Animais , Brasil , Mudança Climática , Micoses/transmissão , Dinâmica Populacional , Estações do Ano
17.
Ecol Evol ; 5(18): 4079-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26445660

RESUMO

The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA