Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 98: 15-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378701

RESUMO

Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates the nonselective acquisition of extracellular material via large endocytic vesicles known as macropinosomes. In addition to other functions, this uptake pathway supports cancer cell metabolism through the uptake of nutrients. Cells harboring oncogene or tumor suppressor mutations are known to display heightened macropinocytosis, which confers to the cancer cells the ability to survive and proliferate despite the nutrient-scarce conditions of the tumor microenvironment. Thus, macropinocytosis is associated with cancer malignancy. Macropinocytic uptake can be induced in cancer cells by different stress stimuli, acting as an adaptive mechanism for the cells to resist stresses in the tumor milieu. Here, we review the cellular stresses that are known to promote macropinocytosis, as well as the underlying molecular mechanisms that drive this process.


Assuntos
Neoplasias , Pinocitose , Transporte Biológico , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Nutrientes , Pinocitose/fisiologia , Transdução de Sinais , Microambiente Tumoral
2.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293142

RESUMO

Macropinocytosis has emerged as a nutrient-scavenging pathway that cancer cells exploit to survive the nutrient-deprived conditions of the tumor microenvironment. Cancer cells are especially reliant on glutamine for their survival, and in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine deficiency can enhance the stimulation of macropinocytosis, allowing the cells to escape metabolic stress through the production of extracellular-protein-derived amino acids. Here, we identify the atypical protein kinase C (aPKC) enzymes, PKCζ and PKCι as novel regulators of macropinocytosis. In normal epithelial cells, aPKCs are known to regulate cell polarity in association with the scaffold proteins Par3 and Par6, controlling the function of several targets, including the Par1 kinases. In PDAC cells, we identify that each of these cell polarity proteins are required for glutamine stress-induced macropinocytosis. Mechanistically, we find that the aPKCs are regulated by EGFR signaling or by the transcription factor CREM to promote the relocation of Par3 to microtubules, facilitating macropinocytosis in a dynein-dependent manner. Importantly, we determine that cell fitness impairment caused by aPKC depletion is rescued by the restoration of macropinocytosis and that aPKCs support PDAC growth in vivo. These results identify a previously unappreciated role for cell polarity proteins in the regulation of macropinocytosis and provide a better understanding of the mechanistic underpinnings that control macropinocytic uptake in the context of metabolic stress.

3.
Nat Cancer ; 5(1): 100-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814011

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Asparagina/metabolismo , Linhagem Celular Tumoral , Asparaginase/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Processos Neoplásicos
4.
Essays Biochem ; 63(5): 579-594, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31671190

RESUMO

Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFß, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFß receptors and other key proteins involved in transduction pathways controlling EMT.


Assuntos
Movimento Celular/fisiologia , Enzimas Desubiquitinantes/metabolismo , Animais , Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Cancer Res ; 79(1): 33-46, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341066

RESUMO

In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFß during EMT and was required for TGFß-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFß-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição da Família Snail/química , Fator de Crescimento Transformador beta/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Estabilidade Proteica , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/genética , Células Tumorais Cultivadas , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cell Biol ; 36(6): 923-40, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711268

RESUMO

Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor ß1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3ß (GSK-3ß) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3ß phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the ß-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3ß inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3ß inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism.


Assuntos
Morte Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Animais , Aorta/citologia , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail , Suínos , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Regulação para Cima , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA