Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 20(1): 563-582, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443789

RESUMO

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in control of postharvest diseases of fresh fruit. However, these findings remain controversial, with many mixed claims in the literature. In this work, we used random-effects meta-analysis to investigate the effects of 1% chitosan on (a) postharvest decay incidence; (b) mycelium growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and Alternaria spp.; and (c) phenylalanine ammonia-lyase, chitinase and ß-1,3-glucanase activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD], -30.22; p < 0.00001) and in vitro mycelium growth (MD, -54.32; p  < 0.00001). For host defense responses, there were significantly increased activities of ß-1,3-glucanase (MD, 115.06; p = 0.003) and chitinase (MD, 75.95; p < 0.0002). This systematic review contributes to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique properties in the natural compound panorama. Chitosan thus represents a model plant protection biopolymer for sustainable control of postharvest decay of fresh fruit.


Assuntos
Anti-Infecciosos , Quitosana , Anti-Infecciosos/farmacologia , Botrytis , Quitosana/farmacologia , Conservação de Alimentos , Frutas
2.
Mol Plant Microbe Interact ; 33(2): 145-148, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31687915

RESUMO

Monilinia laxa is the causal agent of brown rot on stone fruit, and it can cause heavy yield losses during field production and postharvest storage. This article reports the draft genome assembly of the M. laxa Mlax316 strain, obtained using a hybrid genome assembly with both Illumina short-reads and PacBio long-reads sequencing technologies. The complete draft genome consists of 49 scaffolds with total size of 42.81 Mb, and scaffold N50 of 2,449.4 kb. Annotation of the M. laxa assembly identified 11,163 genes and 12,424 proteins which were functionally annotated. This new genome draft improves current genomic resources available for M. laxa and represents a useful tool for further research into its interactions with host plants and into evolution in the Monilinia genus.


Assuntos
Ascomicetos , Genoma Fúngico , Genômica , Ascomicetos/genética , Genoma Fúngico/genética , Genômica/tendências , Doenças das Plantas/microbiologia
3.
J Econ Entomol ; 108(4): 1506-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470289

RESUMO

Bois noir is an economically important grapevine yellows that is induced by 'Candidatus Phytoplasma solani' and principally vectored by the planthopper Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). This study explores the 'Ca. P. solani' genetic variability associated to the nettle-H. obsoletus and bindweed-H. obsoletus systems in vineyard agroecosystems of the central-eastern Italy. Molecular characterization of 'Ca. P. solani' isolates was carried out using polymerase chain reaction/restriction fragment length polymorphism to investigate the nonribosomal vmp1 gene. Seven phytoplasma vmp-types were detected among the host plants- and insect-associated field-collected samples. The vmp1 gene showed the highest polymorphism in the bindweed-H. obsoletus system, according to restriction fragment length polymorphism analysis, which is in agreement with nucleotide sequence analysis. Five vmp-types were associated with H. obsoletus from bindweed, of which one was solely restricted to planthoppers, with one genotype also in planthoppers from nettle. Type V12 was the most prevalent in both planthoppers and bindweed. H. obsoletus from nettle harbored three vmp-types, of which V3 was predominant. V3 was the only type detected for nettle. Our data demonstrate that planthoppers might have acquired some 'Ca. P. solani' profiles from other plant hosts before landing on nettle or bindweed. Overall, the different vmp1 gene rearrangements observed in these two plant hosts-H. obsoletus systems might represent different adaptations of the pathogen to the two host plants. Molecular information about the complex of vmp-types provides useful data for better understanding of Bois noir epidemiology in vineyard agroecosystem.


Assuntos
Proteínas de Bactérias/genética , Convolvulus/microbiologia , Variação Genética , Hemípteros/microbiologia , Phytoplasma/fisiologia , Urtica dioica/microbiologia , Animais , Itália , Dados de Sequência Molecular , Filogenia , Phytoplasma/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Vitis/microbiologia
4.
Plants (Basel) ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256777

RESUMO

Tuber melanosporum is an ascomycete that forms ectomycorrhizal (ECM) symbioses with a wide range of host plants, producing edible fruiting bodies with high economic value. The quality of seedlings in the early symbiotic stage is important for successful truffle cultivation. Numerous bacterial species have been reported to take part in the truffle biological cycle and influence the establishment of roots symbiosis in plant hosts and the development of the carpophore. In this work, three different bacteria formulations were co-inoculated in Quercus ilex L. seedlings two months after T. melanosporum inoculation. At four months of bacterial application, the T. melanosporum ECM root tip rate of colonization and bacterial presence were assessed using both morphological and molecular techniques. A 2.5-fold increase in ECM colonization rate was found in the presence of Pseudomonas sp. compared to the seedlings inoculated only with T. melanosporum. The same treatment caused reduced plant growth either for the aerial and root part. Meanwhile, the ECM colonization combined with Bradyrhizobium sp. and Pseudomonas sp. + Bradyrhizobium sp. reduced the relative density of fibrous roots (nutrient absorption). Our work suggests that the role of bacteria in the early symbiotic stages of ECM colonization involves both the mycorrhizal symbiosis rate and plant root development processes, both essential for improve the quality of truffle-inoculated seedlings produced in commercial nurseries.

5.
Phytopathology ; 102(3): 290-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22316358

RESUMO

To evaluate wood colonization and interactions with Vitis spp. of Phaeomoniella chlamydospora, a fungal agent involved in Esca disease, isolate CBS 229.95 was transformed using a pCT74 construct which contained the genetic markers for synthetic green fluorescent protein (sGFP) and hygromycin B phosphotransferase. Nine stable P. chlamydospora fungal transformants (Pch-sGFP lines) were obtained using polyethylene-glycol-mediated transformation of protoplasts. These were characterized for sgfp and hygromycin B phosphotransferase (hph) genome insertions and for sGFP fluorescence emission, using quantitative polymerase chain reaction and fluorimetric systems, respectively. No correlation was observed between sgfp copy number genome insertion and sGFP fluorescence expression. Cuttings of Vitis vinifera 'Montepulciano', 'Verdicchio', 'Sangiovese', 'Biancame', and 'Cabernet Sauvignon'; and the grapevine rootstocks 'Kober 5BB', 'SO4', '420A', '1103P', and V. rupestris were inoculated by immersion in a conidial suspension of the selected fungal Pch-sGFP71 line and incubated at 4 ± 1 and 25 ± 1°C. Wood colonization was estimated through epifluorescence microscopy and was affected by incubation temperature. After 6 months at 4 ± 1°C, the fungal growth was completely inhibited. At 25 ± 1°C, the highest extent of wood colonization was recorded in Montepulciano and Verdicchio, with the lowest in the rootstocks SO4 and V. rupestris. The expression of the Pch-sGFP71 transformed line was localized in the xylem area, primarily around the vessels. The use of sGFP-transformed P. chlamydospora helped to clarify different aspects associated with the location of this pathogen in grapevine tissue, before disease symptom expression.


Assuntos
Ascomicetos/genética , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia , Ascomicetos/citologia , Fluorescência , Organismos Geneticamente Modificados , Protoplastos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes , Transformação Genética , Vitis/citologia , Madeira/citologia , Madeira/microbiologia
6.
Front Microbiol ; 13: 854852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356516

RESUMO

Monilinia species are among the most devastating fungi worldwide as they cause brown rot and blossom blight on fruit trees. To understand the molecular bases of their pathogenic lifestyles, we compared the newly assembled genomes of single strains of Monilinia fructicola, M. fructigena and M. laxa, with those of Botrytis cinerea and Sclerotinia sclerotiorum, as the closest species within Sclerotiniaceae. Phylogenomic analysis of orthologous proteins and syntenic investigation suggest that M. laxa is closer to M. fructigena than M. fructicola, and is closest to the other investigated Sclerotiniaceae species. This indicates that M. laxa was the earliest result of the speciation process. Distinct evolutionary profiles were observed for transposable elements (TEs). M. fructicola and M. laxa showed older bursts of TE insertions, which were affected (mainly in M. fructicola) by repeat-induced point (RIP) mutation gene silencing mechanisms. These suggested frequent occurrence of the sexual process in M. fructicola. More recent TE expansion linked with low RIP action was observed in M. fructigena, with very little in S. sclerotiorum and B. cinerea. The detection of active non-syntenic TEs is indicative of horizontal gene transfer and has resulted in alterations in specific gene functions. Analysis of candidate effectors, biosynthetic gene clusters for secondary metabolites and carbohydrate-active enzymes, indicated that Monilinia genus has multiple virulence mechanisms to infect host plants, including toxins, cell-death elicitor, putative virulence factors and cell-wall-degrading enzymes. Some species-specific pathogenic factors might explain differences in terms of host plant and organ preferences between M. fructigena and the other two Monilinia species.

7.
J Fungi (Basel) ; 7(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34682291

RESUMO

In this work we analyzed the relationship among native arbuscular mycorrhizal fungi (AMF) and vine roots affected by esca, a serious grapevine trunk disease. The AMF symbiosis was analyzed on the roots of neighboring plants (symptomatic and asymptomatic to esca) in 14 sites of three vineyards in Marche region (central-eastern Italy). The AMF colonization intensity, identified by non-vital staining, showed higher value in all esca symptomatic plants (ranging from 24.6% to 61.3%) than neighboring asymptomatic plants (from 17.4% to 57.6%). The same trend of Glomeromycota phylum abundance was detected by analyzing fungal operational taxonomic units (OTUs) linked to the AMF community, obtained by amplicon high throughput analysis of ITS 1 region. Overall, the highest amount of OTUs was detected on roots from symptomatic plants (0.42%), compared to asymptomatic roots (0.29%). Specific primer pairs for native Rhizophagus irregularis and Funneliformis mosseae AMF species, were designed in 28S rRNA and large subunit (LSU) ribosomal RNA, respectively, and droplet digital PCR protocol for absolute quantification was set up. A higher number of DNA copies of both fungal species were detected more frequently in symptomatic than asymptomatic vines. Our study suggests a relationship between esca and native AMF in grapevine. These results underline the importance of native rhizosphere microbial communities for a better knowledge of grapevine esca disease.

8.
Front Plant Sci ; 12: 765806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858463

RESUMO

Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney's decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.

9.
Front Microbiol ; 12: 764447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087483

RESUMO

Stagonosporopsis cucurbitacearum is an important seedborne pathogen of squash (Cucurbita maxima). The aim of our work was to develop a rapid and sensitive diagnostic tool for detection and quantification of S. cucurbitacearum in squash seed samples, to be compared with blotter analysis, that is the current official seed test. In blotter analysis, 29 of 31 seed samples were identified as infected, with contamination from 1.5 to 65.4%. A new set of primers (DB1F/R) was validated in silico and in conventional, quantitative real-time PCR (qPCR) and droplet digital (dd) PCR. The limit of detection of S. cucurbitacearum DNA for conventional PCR was ∼1.82 × 10-2 ng, with 17 of 19 seed samples positive. The limit of detection for ddPCR was 3.6 × 10-3 ng, which corresponded to 0.2 copies/µl. Detection carried out with artificial samples revealed no interference in the absolute quantification when the seed samples were diluted to 20 ng. All seed samples that showed S. cucurbitacearum contamination in the blotter analysis were highly correlated with the absolute quantification of S. cucurbitacearum DNA (copies/µl) in ddPCR (R 2 = 0.986; p ≤ 0.01). Our ddPCR protocol provided rapid detection and absolute quantification of S. cucurbitacearum, offering a useful support to the standard procedure.

10.
Sci Rep ; 9(1): 2013, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765733

RESUMO

'Candidatus Phytoplasma solani' is the causal agent of Bois noir (BN) in grapevine (Vitis vinifera). It is usually detected in leaves, where typical disease symptoms are seen. However, little information is available on the presence of this phytoplasma in grapevine roots. Here, we investigated 'Ca. P. solani' in roots collected from 28 symptomatic, 27 recovered and eight asymptomatic grapevine plants. Protocols based on high-resolution melting (HRM) combined with real-time quantitative PCR (qPCR-HRM) and nested-qPCR-HRM were developed to identify 'Ca. P. solani' tuf-type variants with single nucleotide polymorphisms. In all, 21.4% of roots from symptomatic plants were positive to 'Ca. P. solani' using qPCR-HRM, and 60.7% with nested-qPCR HRM. Also, 7.4% of roots from recovered plants were positive using qPCR-HRM, which reached 44.4% using nested-qPCR HRM. These analyses identified tuf-type b1 on 88.2% of the positive samples from symptomatic grapevines, and 66.6% from recovered grapevines, with all other samples identified as tuf-type a. This study reports the presence of 'Ca. P. solani' in the roots of both symptomatic and recovered grapevines. These qPCR-HRM and nested-qPCR-HRM protocols can be applied to increase the sensitivity of detection of, and to simplify and speed up the screening for, 'Ca. P. solani' tuf-types.


Assuntos
Fenômenos Fisiológicos Bacterianos , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Vitis/microbiologia , Reação em Cadeia da Polimerase
11.
Genome Biol Evol ; 11(10): 2850-2855, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560373

RESUMO

Brown rot is a worldwide fungal disease of stone and pome fruit that is caused by several Monilinia species. Among these, Monilinia fructicola can cause severe preharvest and postharvest losses, especially for stone fruit. Here, we present a high-quality draft genome assembly of M. fructicola Mfrc123 strain obtained using both Illumina and PacBio sequencing technologies. The genome assembly comprised 20 scaffolds, including 29 telomere sequences at both ends of 10 scaffolds, and at a single end of 9 scaffolds. The total length was 44.05 Mb, with a scaffold N50 of 2,592 kb. Annotation of the M. fructicola assembly identified a total of 12,118 genes and 13,749 proteins that were functionally annotated. This newly generated reference genome is expected to significantly contribute to comparative analysis of genome biology and evolution within Monilinia species.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Proteínas Fúngicas/genética , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
12.
BMC Res Notes ; 11(1): 758, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352625

RESUMO

OBJECTIVES: Monilinia fructigena (phylum Ascomycota, family Sclerotiniaceae) is a plant pathogen that causes brown rot and blossom blight in pome fruit and stone fruit of the Rosaceae family, which can cause significant losses in the field and mainly postharvest. The aim of this study was to create a high-quality draft of the M. fructigena genome assembly and annotation that provides better understanding of the epidemiology of the pathogen and its interactions with the host(s) and will thus improve brown rot management. DATA DESCRIPTION: We report here on the genome sequence of M. fructigena strain Mfrg269 that was collected from plum in southern Italy. This is assembled into 131 scaffolds, with a total size of 43.125 Mb, with 9960 unique protein-coding genes. The novel genomic resources allow improved genomic comparisons among the most important pathogens belonging to the Monilinia genus, with the aim being to improve the knowledge of their plant-pathogen interactions, population biology, and control.


Assuntos
Ascomicetos/genética , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Prunus/microbiologia , Itália
13.
Front Plant Sci ; 8: 235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286508

RESUMO

The use of resistance inducers is a novel strategy to elicit defense responses in strawberry fruit to protect against preharvest and postharvest decay. However, the mechanisms behind the specific resistance inducers are not completely understood. Here, global transcriptional changes in strawberry fruit were investigated using RNA-Seq technology. Preharvest, benzothiadiazole (BTH) and chitosan were applied to the plant canopy, and the fruit were harvested at 6, 12, and 24 h post-treatment. Overall, 5,062 and 5,210 differentially expressed genes (fold change ≥ 2) were identified in these fruits under the BTH and chitosan treatments, respectively, as compared to the control expression. About 80% of these genes were differentially expressed by both elicitors. Comprehensive functional enrichment analysis highlighted different gene modulation over time for transcripts associated with photosynthesis and heat-shock proteins, according to elicitor. Up-regulation of genes associated with reprogramming of protein metabolism was observed in fruit treated with both elicitors, which led to increased storage proteins. Several genes associated with the plant immune system, hormone metabolism, systemic acquired resistance, and biotic and abiotic stresses were differentially expressed in treated versus untreated plants. The RNA-Seq output was confirmed using RT-qPCR for 12 selected genes. This study demonstrates that these two elicitors affect cell networks associated with plant defenses in different ways, and suggests a role for chloroplasts as the primary target in this modulation of the plant defense responses, which actively communicate these signals through changes in redox status. The genes identified in this study represent markers to better elucidate plant/pathogen/resistance-inducer interactions, and to plan novel sustainable disease management strategies.

14.
Carbohydr Polym ; 132: 111-7, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26256331

RESUMO

The effectiveness of the control of postharvest decay of strawberry (Fragaria × ananassa, 'Alba' and 'Romina' cvs.) fruit following field applications of chitosan, laminarin, extracts of Abies spp., Polygonum spp., and Saccharomyces spp., an organic acids and calcium combination, and benzothiadiazole, were compared with a fungicide strategy. These compounds were sprayed every 5 days on the strawberry canopy, from flowering to ripening, in 2012 and 2013. The treatments with alternative compounds provided ∼ 30% reduction in postharvest decay of strawberry compared to the water-treated controls, mainly against gray mold and Rhizopus rot, and without negatively affecting fruit color and firmness. Chitosan and benzothiadiazole were the most effective alternative treatments. Preharvest spraying with these alternative treatments can complement the use of conventional fungicides in the control of postharvest decay of strawberry fruit, especially when disease pressure is low.


Assuntos
Quitosana/metabolismo , Conservação de Alimentos/métodos , Fragaria/microbiologia , Frutas/microbiologia , Fungicidas Industriais/metabolismo , Doenças das Plantas/prevenção & controle , Tiadiazóis/metabolismo , Qualidade dos Alimentos , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Fungos/efeitos dos fármacos , Doenças das Plantas/microbiologia
15.
BMC Biotechnol ; 4: 4, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15113427

RESUMO

BACKGROUND: The DefH9-iaaM gene fusion which is expressed specifically in placenta/ovules and promotes auxin-synthesis confers parthenocarpic fruit development to eggplant, tomato and tobacco. Transgenic DefH9-iaaM eggplants and tomatoes show increased fruit production due mainly to an improved fruit set. However, the weight of the fruits is also frequently increased. RESULTS: DefH9-iaaM strawberry and raspberry plants grown under standard cultivation conditions show a significant increase in fruit number and size and fruit yield. In all three Rosaceae species tested, Fragaria vesca, Fragaria x ananassa and Rubus idaeus, DefH9-iaaM plants have an increased number of flowers per inflorescence and an increased number of inflorescences per plant. This results in an increased number of fruits per plant. Moreover, the weight and size of transgenic fruits was also increased. The increase in fruit yield was approximately 180% in cultivated strawberry, 140% in wild strawberry, and 100% in raspberry. The DefH9-iaaM gene is expressed in the flower buds of all three species. The total IAA (auxin) content of young flower buds of strawberry and raspberry expressing the DefH9-iaaM gene is increased in comparison to untransformed flower buds. The DefH9-iaaM gene promotes parthenocarpy in emasculated flowers of both strawberry and raspberry. CONCLUSIONS: The DefH9-iaaM gene is expressed and biologically active in Rosaceae. The DefH9-iaaM gene can be used, under cultivation conditions that allow pollination and fertilization, to increase fruit productivity significantly in Rosaceae species. The finding that the DefH9-iaaM auxin-synthesizing gene increases the number of inflorescences per plant and the number of flowers per inflorescence indicates that auxin plays a role in plant fecundity in these three perennial Rosaceae species.


Assuntos
Fragaria/genética , Frutas/genética , Genes de Plantas/genética , Ácidos Indolacéticos/biossíntese , Southern Blotting , Fertilidade/genética , Fertilidade/fisiologia , Flores/genética , Flores/metabolismo , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Tamanho do Órgão , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
16.
BMC Biotechnol ; 2: 18, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12354328

RESUMO

BACKGROUND: Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. The current methods for the production of transgenic grape plants are based on Agrobacterium-mediated transformation followed by regeneration from embryogenic callus. However, grape embryogenic calli are laborious to establish and the phenotype of the regenerated plants can be altered. RESULTS: Transgenic grape plants (V. vinifera, table-grape cultivars Silcora and Thompson Seedless) were produced using a method based on regeneration via organogenesis. In vitro proliferating shoots were cultured in the presence of increasing concentrations of N6-benzyl adenine. The apical dome of the shoot was removed at each transplantation which, after three months, produced meristematic bulk tissue characterized by a strong capacity to differentiate adventitious shoots. Slices prepared from the meristematic bulk were used for Agrobacterium-mediated transformation of grape plants with the gene DefH9-iaaM. After rooting on kanamycin containing media and greenhouse acclimatization, transgenic plants were transferred to the field. At the end of the first year of field cultivation, DefH9-iaaM grape plants were phenotypically homogeneous and did not show any morphological alterations in vegetative growth. The expression of DefH9-iaaM gene was detected in transgenic flower buds of both cultivars. CONCLUSIONS: The phenotypic homogeneity of the regenerated plants highlights the validity of this method for both propagation and genetic transformation of table grape cultivars. Expression of the DefH9-iaaM gene takes place in young flower buds of transgenic plants from both grape cultivars.


Assuntos
Plantas Geneticamente Modificadas , Transformação Genética , Vitis/embriologia , Vitis/genética , Indústria Alimentícia/métodos , Técnicas de Transferência de Genes/tendências , Genes Bacterianos/genética , Genes de Plantas/genética , Engenharia Genética/métodos , Magnoliopsida/genética , Meristema/genética , Meristema/metabolismo , Oxigenases de Função Mista/genética , Organogênese/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Pseudomonas/enzimologia , Pseudomonas/genética , Proteínas Recombinantes de Fusão/genética , Rhizobium/genética , Vitis/enzimologia
17.
J Agric Food Chem ; 62(14): 3047-3056, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24627944

RESUMO

The expression of 18 defense genes in strawberry fruit treated with elicitors: chitosan, BTH, and COA, at 0.5, 6, 24, and 48 h post-treatment was analyzed. The genes were up-regulated differentially, according to the elicitor. Chitosan and COA treatments promoted the expression of key phenylpropanoid pathway genes, for synthesis of lignin and flavonoids; only those associated with flavonoid metabolism were up-regulated by BTH. The calcium-dependent protein kinase, endo-ß 1,4-glucanase, ascorbate peroxidase, and glutathione-S-transferase genes were up-regulated by BTH. The K+ channel, polygalacturonase, polygalacturonase-inhibiting protein, and ß-1,3-glucanase, increased in response to all tested elicitors. The enzyme activities of phenylalanine ammonia lyase, ß-1,3-glucanase, Chitinase, and guaiacol peroxidase supported the gene expression results. Similarity of gene expression was >72% between chitosan and COA treatments, while BTH showed lower similarity (38%) with the other elicitors. This study suggests the relationship between the composition of the elicitors and a specific pattern of induced defense genes.

18.
J Agric Food Chem ; 59(12): 6628-37, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21627069

RESUMO

Although Bois noir is one of the main phytoplasma diseases of grapevine, the gene expression and enzyme activities that underlie physiological changes occurring in symptomatic and recovered (with spontaneous or induced symptom remission) plants are mostly unknown. Bois noir symptomatic leaves (September 2006, 2007) and symptomless leaves from infected symptomatic plants (September 2007) of Sangiovese (moderately susceptible) and Chardonnay (highly susceptible) cultivars were collected. Moreover, leaves from infected symptomless plants of both cultivars were harvested in June 2007. Leaves from recovered plants were also collected in the same periods. In recovered plants of both cultivars, class III chitinase and almost every time phenylalanine ammonia-lyase and chalcone synthase expression were increased for all collection periods. In symptomatic leaves of both cultivars, the expressions of the same genes were up-regulated and also those of ß-1,3-glucanase and flavanone 3-hydroxylase. The activities of chitinase, phenylalanine ammonia-lyase, ß-1,3-glucanase, and superoxide dismutase generally correlated with gene expression. For the moderately susceptible Sangiovese, the defense genes were generally up-regulated in both symptomatic and symptomless leaves (for all collection periods). This behavior was not observed in the highly susceptible Chardonnay, in which changes in gene expression were linked to evident symptom display. Therefore, the physiological response of the plants to this pathogen infection appear to be the reason for the resistance of the cultivar to the disease.


Assuntos
Regulação da Expressão Gênica de Plantas , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Vitis/genética , Vitis/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Estações do Ano , Vitis/metabolismo
19.
Plant Physiol ; 143(4): 1689-94, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17337528

RESUMO

Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs.


Assuntos
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Transgenes , Vitis/fisiologia , Dados de Sequência Molecular , Valor Nutritivo , Reação em Cadeia da Polimerase , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA