Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 609(7925): 183-190, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35922507

RESUMO

Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells1-3. Assembly of mitotic chromosomes involves DNA looping by condensin4-8 and chromatin compaction by global histone deacetylation9-13. Although condensin confers mechanical resistance to spindle pulling forces14-16, it is not known how histone deacetylation affects material properties and, as a consequence, segregation mechanics of mitotic chromosomes. Here we show how global histone deacetylation at the onset of mitosis induces a chromatin-intrinsic phase transition that endows chromosomes with the physical characteristics necessary for their precise movement during cell division. Deacetylation-mediated compaction of chromatin forms a structure dense in negative charge and allows mitotic chromosomes to resist perforation by microtubules as they are pushed to the metaphase plate. By contrast, hyperacetylated mitotic chromosomes lack a defined surface boundary, are frequently perforated by microtubules and are prone to missegregation. Our study highlights the different contributions of DNA loop formation and chromatin phase separation to genome segregation in dividing cells.


Assuntos
Cromatina , Microtúbulos , Mitose , Acetilação , Cromatina/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Histonas/metabolismo , Microtúbulos/metabolismo , Transição de Fase , Fuso Acromático/metabolismo
2.
Nature ; 586(7827): 139-144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968280

RESUMO

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Assuntos
Cromátides/química , Pareamento Cromossômico , Replicação do DNA , Genoma Humano/genética , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/análise , DNA/biossíntese , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Coesinas
3.
Nature ; 464(7286): 287-91, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20220848

RESUMO

Systematic genetic approaches have provided deep insight into the molecular and cellular mechanisms that operate in simple unicellular organisms. For multicellular organisms, however, the pleiotropy of gene function has largely restricted such approaches to the study of early embryogenesis. With the availability of genome-wide transgenic RNA interference (RNAi) libraries in Drosophila, it is now possible to perform a systematic genetic dissection of any cell or tissue type at any stage of the lifespan. Here we apply these methods to define the genetic basis for formation and function of the Drosophila muscle. We identify a role in muscle for 2,785 genes, many of which we assign to specific functions in the organization of muscles, myofibrils or sarcomeres. Many of these genes are phylogenetically conserved, including genes implicated in mammalian sarcomere organization and human muscle diseases.


Assuntos
Drosophila melanogaster/embriologia , Genes de Insetos/genética , Animais , Biologia Computacional , Estudo de Associação Genômica Ampla , Biblioteca Genômica , Larva , Masculino , Músculos/embriologia , Interferência de RNA
4.
Genome Biol ; 24(1): 158, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408019

RESUMO

Genome browsers facilitate integrated analysis of multiple genomics datasets yet visualize only a few regions at a time and lack statistical functions for extracting meaningful information. We present HiCognition, a visual exploration and machine-learning tool based on a new genomic region set concept, enabling detection of patterns and associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing how transcription and cohesion subunit isoforms contribute to chromosome conformation, we showcase how the flexible user interface and machine learning tools of HiCognition help to understand the relationship between the structure and function of the genome.


Assuntos
Genoma Humano , Genômica , Software , Humanos , Genômica/métodos , Cromossomos Humanos , Aprendizado de Máquina
5.
Nat Protoc ; 17(6): 1486-1517, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35478248

RESUMO

Chromosome conformation capture (Hi-C) techniques map the 3D organization of entire genomes. How sister chromatids fold in replicated chromosomes, however, cannot be determined with conventional Hi-C because of the identical DNA sequences of sister chromatids. Here, we present a protocol for sister chromatid-sensitive Hi-C (scsHi-C) that enables the distinction of DNA contacts within individual sister chromatids (cis sister contacts) from those between sister chromatids (trans sister contacts), thereby allowing investigation of the organization of replicated genomes. scsHi-C is based on live-cell labeling of nascent DNA by the synthetic nucleoside 4-thio-thymidine (4sT), which incorporates into a distinct DNA strand on each sister chromatid because of semi-conservative DNA replication. After purification of genomic DNA and in situ Hi-C library preparation, 4sT is chemically converted into 5-methyl-cytosine in the presence of OsO4/NH4Cl to introduce T-to-C signature point mutations on 4sT-labeled DNA. The Hi-C library is then sequenced, and ligated fragments are assigned to sister chromatids on the basis of strand orientation and the presence of signature mutations. The ensemble of scsHi-C contacts thereby represents genome-wide contact probabilities within and across sister chromatids. scsHi-C can be completed in 2 weeks, has been successfully applied in HeLa cells and can potentially be established for any cell type that allows proper cell cycle synchronization and incorporation of sufficient amounts of 4sT. The genome-wide maps of replicated chromosomes detected by scsHi-C enable investigation of the molecular mechanisms shaping sister chromatid topologies and the relevance of sister chromatid conformation in crucial processes like DNA repair, mitotic chromosome formation and potentially other biological processes.


Assuntos
Cromátides , Replicação do DNA , Cromátides/genética , Reparo do DNA , Células HeLa , Humanos
6.
PLoS One ; 5(1): e8928, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126626

RESUMO

BACKGROUND: Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species. METHODOLOGY/PRINCIPAL FINDINGS: We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster. CONCLUSIONS/SIGNIFICANCE: The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.


Assuntos
Drosophila/genética , Genômica , Interferência de RNA , Transgenes , Animais , Sequência de Bases , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA