Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(11): 3439-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24889888

RESUMO

In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.


Assuntos
Ecossistema , Temperatura Alta , Modelos Teóricos , Regiões Árticas , Ásia , Europa (Continente) , Florestas , Pradaria , América do Norte , Tundra , Áreas Alagadas
2.
Nat Commun ; 14(1): 1721, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977724

RESUMO

Industrial contaminants accumulated in Arctic permafrost regions have been largely neglected in existing climate impact analyses. Here we identify about 4500 industrial sites where potentially hazardous substances are actively handled or stored in the permafrost-dominated regions of the Arctic. Furthermore, we estimate that between 13,000 and 20,000 contaminated sites are related to these industrial sites. Ongoing climate warming will increase the risk of contamination and mobilization of toxic substances since about 1100 industrial sites and 3500 to 5200 contaminated sites located in regions of stable permafrost will start to thaw before the end of this century. This poses a serious environmental threat, which is exacerbated by climate change in the near future. To avoid future environmental hazards, reliable long-term planning strategies for industrial and contaminated sites are needed that take into account the impacts of cimate change.

3.
Sci Rep ; 10(1): 12938, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737382

RESUMO

The integration of graphene into CMOS compatible Ge technology is in particular attractive for optoelectronic devices in the infrared spectral range. Since graphene transfer from metal substrates has detrimental effects on the electrical properties of the graphene film and moreover, leads to severe contamination issues, direct growth of graphene on Ge is highly desirable. In this work, we present recipes for a direct growth of graphene on Ge via thermal chemical vapor deposition (TCVD) and plasma-enhanced chemical vapor deposition (PECVD). We demonstrate that the growth temperature can be reduced by about 200 °C in PECVD with respect to TCVD, where usually growth occurs close to the melting point of Ge. For both, TCVD and PECVD, hexagonal and elongated morphology is observed on Ge(100) and Ge(110), respectively, indicating the dominant role of substrate orientation on the shape of graphene grains. Interestingly, Raman data indicate a compressive strain of ca. - 0.4% of the graphene film fabricated by TCVD, whereas a tensile strain of up to + 1.2% is determined for graphene synthesized via PECVD, regardless the substrate orientation. Supported by Kelvin probe force measurements, we suggest a mechanism that is responsible for graphene formation on Ge and the resulting strain in TCVD and PECVD.

4.
Nat Commun ; 11(1): 2201, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366820

RESUMO

The ice- and organic-rich permafrost of the northeast Siberian Arctic lowlands (NESAL) has been projected to remain stable beyond 2100, even under pessimistic climate warming scenarios. However, the numerical models used for these projections lack processes which induce widespread landscape change termed thermokarst, precluding realistic simulation of permafrost thaw in such ice-rich terrain. Here, we consider thermokarst-inducing processes in a numerical model and show that substantial permafrost degradation, involving widespread landscape collapse, is projected for the NESAL under strong warming (RCP8.5), while thawing is moderated by stabilizing feedbacks under moderate warming (RCP4.5). We estimate that by 2100 thaw-affected carbon could be up to three-fold (twelve-fold) under RCP4.5 (RCP8.5), of what is projected if thermokarst-inducing processes are ignored. Our study provides progress towards robust assessments of the global permafrost carbon-climate feedback by Earth system models, and underlines the importance of mitigating climate change to limit its impacts on permafrost ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA