Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nat Methods ; 19(6): 751-758, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637303

RESUMO

Label-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel. NSM facilitates accurate determination of molecular weight from the measured optical contrast and of the hydrodynamic radius from the measured diffusivity, from which information about the conformational state can be inferred. Furthermore, we demonstrate its applicability to the analysis of a complex biofluid, using conditioned cell culture medium containing extracellular vesicles as an example. We foresee the application of NSM to monitor conformational changes, aggregation and interactions of single biomolecules, and to analyze single-cell secretomes.


Assuntos
Nanopartículas , Nanotecnologia , Difusão , Microscopia de Fluorescência
2.
Acc Chem Res ; 56(13): 1850-1861, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37352016

RESUMO

ConspectusSensors are ubiquitous, and their importance is only going to increase across many areas of modern technology. In this respect, hydrogen gas (H2) sensors are no exception since they allow mitigation of the inherent safety risks associated with mixtures of H2 and air. The deployment of H2 technologies is rapidly accelerating in emerging energy, transport, and green steel-making sectors, where not only safety but also process monitoring sensors are in high demand. To meet this demand, cost-effective and scalable routes for mass production of sensing materials are required. Here, the state-of-the-art often resorts to processes derived from the microelectronics industry where surface-based micro- and nanofabrication are the methods of choice and where (H2) sensor manufacturing is no exception.In this Account, we discuss how our recent efforts to develop sensors based on plasmonic plastics may complement the current state-of-the-art. We explore a new H2 sensor paradigm, established through a series of recent publications, that combines (i) the plasmonic optical H2 detection principle and (ii) bulk-processed nanocomposite materials. In particular, plasmonic plastic nanocomposite sensing materials are described that comprise plasmonic H2-sensitive colloidally synthesized nanoparticles dispersed in a polymer matrix and enable the additive manufacturing of H2 sensors in a cost-effective and scalable way. We first discuss the concept of plasmonic plastic nanocomposite materials for the additive manufacturing of an active plasmonic sensing material on the basis of the three key components that require individual and concerted optimization: (i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizer molecules on the nanoparticle surface from colloidal synthesis, and (iii) the polymer matrix. We then introduce the working principle of plasmonic H2 detection, which relies on the selective absorption of H species into hydride-forming metal nanoparticles that, in turn, induces distinct changes in their optical plasmonic signature in proportion to the H2 concentration in the local atmosphere. Subsequently, we assess the roles of the key components of a plasmonic plastic for H2 sensing, where we have established that (i) alloying Pd with Au and Cu eliminates hysteresis and introduces intrinsic deactivation resistance at ambient conditions, (ii) surfactant/stabilizer molecules can significantly accelerate and decelerate H2 sorption and thus sensor response, and (iii) polymer coatings accelerate sensor response, reduce the limit of detection (LoD), and enable molecular filtering for sensor operation in chemically challenging environments. Based on these insights, we discuss the rational development and detailed characterization of bulk-processed plasmonic plastics based on glassy and fluorinated matrix polymers and on tailored flow-chemistry-based synthesis of Pd and PdAu alloy colloidal nanoparticles with optimized stabilizer molecules. In their champion implementation, they enable highly stable H2 sensors with response times in the 2 s range and an LoD of few 10 ppm of H2. To put plasmonic plastics in a wider perspective, we also report their implementation using different polymer matrix materials that can be used for 3D printing and (an)isotropic Au nanoparticles that enable the manufacturing of macroscopic plasmonic objects with, if required, dichroic optical properties and in amounts that can be readily upscaled. We advertise that melt processing of plasmonic plastic nanocomposites is a viable route toward the realization of plasmonic objects and sensors, produced by scalable colloidal synthesis and additive manufacturing techniques.

3.
J Am Chem Soc ; 144(19): 8848-8860, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35486918

RESUMO

Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.


Assuntos
Óxidos , Enxofre , Catálise , Óxidos/química , Análise Espectral , Sulfatos , Enxofre/química
4.
Nano Lett ; 21(1): 353-359, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337897

RESUMO

Temperature-programmed desorption (TPD) allows for the determination of the bonding strength and coverage of molecular mono- or multilayers on a surface and is widely used in surface science. In its traditional form using a mass spectrometric readout, this information is derived indirectly by analysis of resulting desorption peaks. This is problematic because the mass spectrometer signal not only originates from the sample surface but also potentially from other surfaces in the measurement chamber. As a complementary alternative, we introduce plasmonic TPD, which directly measures the surface coverage of molecular species adsorbed on metal nanoparticles at ultrahigh vacuum conditions. Using the examples of methanol and benzene on Au nanoparticle surfaces, the method can resolve all relevant features in the submonolayer and multilayer regimes. Furthermore, it enables the study of two types of nanoparticles simultaneously, which is challenging in a traditional TPD experiment, as we demonstrate specifically for Au and Ag.

5.
Nat Mater ; 18(5): 489-495, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936481

RESUMO

Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.

6.
Anal Chem ; 89(4): 2575-2582, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28194946

RESUMO

Organic semiconductors are key materials for the next generation thin film electronic devices like field-effect transistors, light-emitting diodes, and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies, and quality control because the desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of a hundred nanometers or less. Scrutinizing the thermal properties in this size range is, however, critical because strong deviations of the thermal properties from bulk values due to confinement effects and pronounced influence of the substrate become significant. Here, we introduce plasmonic nanospectroscopy as an experimental approach to scrutinize the thickness dependence of the thermal stability of semicrystalline, liquid-crystalline, and glassy organic semiconductor thin films down to the sub-100 nm film thickness regime. In summary, we find a pronounced thickness dependence of the glass transition temperature of ternary polymer/fullerene blend thin films and their constituents, which can be resolved with exceptional precision by the plasmonic nanospectroscopy method, which relies on remarkably simple instrumentation.

7.
Nano Lett ; 16(12): 7857-7864, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960495

RESUMO

Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

8.
Nat Mater ; 14(12): 1236-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26343912

RESUMO

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.


Assuntos
Hidrogênio/química , Nanopartículas , Paládio/química , Termodinâmica , Cinética , Análise Espectral/métodos
9.
Langmuir ; 32(11): 2708-17, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907859

RESUMO

We have investigated the interaction of graphene oxide (GO) sheets with supported lipid membranes with focus on how the interaction depends on GO sheet size (three samples in the range of 90-5000 nm) and how it differs between small and large liposomes. The layer-by-layer assembly of these materials into multilamellar structures, as discovered in our previous research, is now further explored. The interaction processes were monitored by two complementary, real time, surface-sensitive analytical techniques: quartz crystal microbalance with dissipation monitoring (QCM-D, electroacoustic sensing) and indirect nanoplasmonic sensing (INPS, optical sensing). The results show that the sizes of each of the two components, graphene oxide and liposomes, are important parameters affecting the resulting multilayer structures. Spontaneous liposome rupture onto graphene oxide is obtained for large lateral dimensions of the graphene oxide sheets.


Assuntos
Grafite/química , Lipossomos/química , Colina/análogos & derivados , Colina/química , Ácidos Palmíticos/química , Tamanho da Partícula , Fosfatidilcolinas/química , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício
10.
Nano Lett ; 15(1): 574-80, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25479190

RESUMO

We use a noninvasive nanoscale optical-temperature measurement method based on localized surface plasmon resonance to investigate the particle size-dependence of the hydrogen oxidation reaction kinetics on model supported Pt nanocatalysts at atmospheric pressure in operando. With decreasing average nanoparticle size from 11 down to 3 nm, the apparent reaction activation energy is found to increase from 0.5 up to 0.8 eV. This effect is attributed to an increase of the fraction of (100)-facet and edge and corner sites and their increasingly important role in the reaction with decreasing particle size.

11.
Nano Lett ; 15(5): 3563-70, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25915663

RESUMO

The recent market introduction of hydrogen fuel cell cars and the prospect of a hydrogen economy have drastically accelerated the need for safe and accurate detection of hydrogen. In this Letter, we investigate the use of arrays of nanofabricated Pd-Au alloy nanoparticles as plasmonic optical hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size.

12.
Anal Chem ; 87(20): 10161-5, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26413906

RESUMO

In the context of carbon capture and storage (CCS), micro- and mesoporous polymers have received significant attention due to their ability to selectively adsorb and separate CO2 from gas streams. The performance of such materials is critically dependent on the isosteric heat of adsorption (Qst) of CO2 directly related to the interaction strength between CO2 and the adsorbent. Here, we show using the microporous polymer PIM-1 as a model system that its Qst can be conveniently determined by in situ UV-vis optical transmission spectroscopy directly applied on the adsorbent or, with higher resolution, by indirect nanoplasmonic sensing based on localized surface plasmon resonance in metal nanoparticles. Taken all together, this study provides a general blueprint for efficient optical screening of micro- and mesoporous polymeric materials for CCS in terms of their CO2 adsorption energetics and kinetics.


Assuntos
Dióxido de Carbono/química , Nanotecnologia , Polímeros/química , Ressonância de Plasmônio de Superfície , Raios Ultravioleta , Adsorção , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
Phys Chem Chem Phys ; 17(29): 18953-60, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26126917

RESUMO

We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

14.
Nano Lett ; 14(5): 2655-63, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24697350

RESUMO

Plasmonic nanoantennas create locally strongly enhanced electric fields in so-called hot spots. To place a relevant nanoobject with high accuracy in such a hot spot is crucial to fully capitalize on the potential of nanoantennas to control, detect, and enhance processes at the nanoscale. With state-of-the-art nanofabrication, in particular when several materials are to be used, small gaps between antenna elements are sought, and large surface areas are to be patterned, this is a grand challenge. Here we introduce self-aligned, bottom-up and self-assembly based Shrinking-Hole Colloidal Lithography, which provides (i) unique control of the size and position of subsequently deposited particles forming the nanoantenna itself, and (ii) allows delivery of nanoobjects consisting of a material of choice to the antenna hot spot, all in a single lithography step and, if desired, uniformly covering several square centimeters of surface. We illustrate the functionality of SHCL nanoantenna arrangements by (i) an optical hydrogen sensor exploiting the polarization dependent sensitivity of an Au-Pd nanoantenna ensemble; and (ii) single particle hydrogen sensing with an Au dimer nanoantenna with a small Pd nanoparticle in the hot spot.

15.
Nano Lett ; 14(10): 5803-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25198035

RESUMO

Employing rationally designed model systems with precise atom-by-atom particle size control, we demonstrate by means of combining noninvasive in situ indirect nanoplasmonic sensing and ex situ scanning transmission electron microscopy that monomodal size-selected platinum cluster catalysts on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions.

16.
Langmuir ; 30(11): 3041-50, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24580549

RESUMO

The self-assembly of individual nanoparticles into dimers-so-called heterodimers-is relevant for a broad range of applications, in particular in the vibrant field of nanoplasmonics and nanooptics. In this paper we report the synthesis and characterization of material- and shape-selected nanoparticle heterodimers assembled from individual particles via electrostatic interaction. The versatility of the synthetic strategy is shown by assembling combinations of metal particles of different shapes, sizes, and metal compositions like a gold sphere (90 nm) with either a gold cube (35 nm), gold rhombic dodecahedron (50 nm), palladium truncated cube (120 nm), palladium rhombic dodecahedron (110 nm), palladium octahedron (130 nm), or palladium cubes (25 and 70 nm) as well as a silver sphere (90 nm) with palladium cubes (25 and 70 nm). The obtained heterodimer combinations are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX), dynamic light scattering (DLS), and zeta-potential measurements. We describe the optimal experimental conditions to achieve the highest yield of heterodimers compared to other aggregates. The experimental results have been rationalized using theoretical modeling. A proof-of-principle experiment where individual Au-Pd heterodimers are exploited for indirect plasmonic sensing of hydrogen finally illustrates the potential of these structures to probe catalytic processes at the single particle level.

17.
Nat Commun ; 15(1): 1208, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332035

RESUMO

Environmental humidity variations are ubiquitous and high humidity characterizes fuel cell and electrolyzer operation conditions. Since hydrogen-air mixtures are highly flammable, humidity tolerant H2 sensors are important from safety and process monitoring perspectives. Here, we report an optical nanoplasmonic hydrogen sensor operated at elevated temperature that combined with Deep Dense Neural Network or Transformer data treatment involving the entire spectral response of the sensor enables a 100 ppm H2 limit of detection in synthetic air at 80% relative humidity. This significantly exceeds the <1000 ppm US Department of Energy performance target. Furthermore, the sensors pass the ISO 26142:2010 stability requirement in 80% relative humidity in air down to 0.06% H2 and show no signs of performance loss after 140 h continuous operation. Our results thus demonstrate the potential of plasmonic hydrogen sensors for use in high humidity and how neural-network-based data treatment can significantly boost their performance.

18.
Anal Biochem ; 435(1): 10-8, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262280

RESUMO

Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.


Assuntos
Melanóforos/metabolismo , Melanossomas/metabolismo , Técnicas de Microbalança de Cristal de Quartzo/métodos , Xenopus laevis/metabolismo , Acústica , Animais , Transporte Biológico , Células Cultivadas , Citoesqueleto/metabolismo , Melaninas/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo , Microtúbulos/metabolismo , Nocodazol/metabolismo
19.
Langmuir ; 29(34): 10693-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23909478

RESUMO

Localized plasmon resonance (LSPR) spectroscopy, employing gold nanodisk substrates, is applied for studies of photoswitching in self-assembled monolayers of azobenzene-containing thiols. By choosing customized samples in which the sharp LSPR resonance is well separated from the spectral regime of the molecular absorption bands, the photoisomerization kinetics of the adlayer can be monitored in real time. Quantitative data on the photoinduced trans-cis and cis-trans isomerization processes in inert gas atmosphere were obtained as a function of irradiation intensity and temperature, demonstrating the high sensitivity of this technique to such processes in functional adlayers.

20.
Langmuir ; 29(23): 7151-61, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23713406

RESUMO

In this study, we have applied three techniques to simultaneously and in situ study the initial stage of corrosion of copper protected by a self-assembled monolayer of octadecanethiol (ODT). We combined quartz crystal microbalance with dissipation monitoring (QCM-D), indirect nanoplasmonic sensing (INPS), and vibrational sum frequency spectroscopy (VSFS) and obtained complementary information about mass uptake and optical and spectroscopic changes taking place during the initial corrosion phase. All three techniques are very sensitive to the formation of a corrosion film (thickness in the range 0-0.41 nm) under mildly corrosive conditions (dry air, <0.5% relative humidity). The three techniques yield information about the viscoelasticity of the corrosion film (QCM-D), the homogeneity of the corrosion reaction on the surface (INPS), and the stability of the ODT protection layer (VSFS). Furthermore, by also studying the corrosion process in humid air (ca. 70% relative humidity), we illustrate how the combination of these techniques can be used to differentiate between simultaneously occurring processes, such as water adsorption and corrosion product formation.


Assuntos
Cobre/química , Técnicas de Microbalança de Cristal de Quartzo , Compostos de Sulfidrila/química , Tamanho da Partícula , Espectrofotometria Infravermelho , Propriedades de Superfície , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA