Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972449

RESUMO

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Assuntos
Helianthus , Helianthus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genótipo , Genômica
2.
BMC Genomics ; 25(1): 199, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378469

RESUMO

BACKGROUND: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS: We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS: This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Environ ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828995

RESUMO

Early sowing can help summer crops escape drought and can mitigate the impacts of climate change on them. However, it exposes them to cold stress during initial developmental stages, which has both immediate and long-term effects on development and physiology. To understand how early night-chilling stress impacts plant development and yield, we studied the reference sunflower line XRQ under controlled, semi-controlled and field conditions. We performed high-throughput imaging of the whole plant parts and obtained physiological and transcriptomic data from leaves, hypocotyls and roots. We observed morphological reductions in early stages under field and controlled conditions, with a decrease in root development, an increase in reactive oxygen species content in leaves and changes in lipid composition in hypocotyls. A long-term increase in leaf chlorophyll suggests a stress memory mechanism that was supported by transcriptomic induction of histone coding genes. We highlighted DEGs related to cold acclimation such as chaperone, heat shock and late embryogenesis abundant proteins. We identified genes in hypocotyls involved in lipid, cutin, suberin and phenylalanine ammonia lyase biosynthesis and ROS scavenging. This comprehensive study describes new phenotyping methods and candidate genes to understand phenotypic plasticity better in response to chilling and study stress memory in sunflower.

4.
Theor Appl Genet ; 137(5): 103, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613680

RESUMO

KEY MESSAGE: The HaOr5 resistance gene is located in a large genomic insertion containing putative resistance genes and provides resistance to O. cumana, preventing successful connection to the sunflower root vascular system. Orobanche cumana (sunflower broomrape) is a parasitic plant that is part of the Orobanchaceae family and specifically infests sunflower crops. This weed is an obligate parasitic plant that does not carry out photosynthetic activity or develop roots and is fully dependent on its host for its development. It produces thousands of dust-like seeds per plant. It possesses a high spreading ability and has been shown to quickly overcome resistance genes successively introduced by selection in cultivated sunflower varieties. The first part of its life cycle occurs underground. The connection to the sunflower vascular system is essential for parasitic plant survival and development. The HaOr5 gene provides resistance to sunflower broomrape race E by preventing the connection of O. cumana to the root vascular system. We mapped a single position of the HaOr5 gene by quantitative trait locus mapping using two segregating populations. The same location of the HaOr5 gene was identified by genome-wide association. Using a large population of thousands of F2 plants, we restricted the location of the HaOr5 gene to a genomic region of 193 kb. By sequencing the whole genome of the resistant line harboring the major resistance gene HaOr5, we identified a large insertion of a complex genomic region containing a cluster of putative resistance genes.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Genômica
5.
Bioinformatics ; 38(17): 4127-4134, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792837

RESUMO

MOTIVATION: Inferring gene regulatory networks in non-independent genetically related panels is a methodological challenge. This hampers evolutionary and biological studies using heterozygote individuals such as in wild sunflower populations or cultivated hybrids. RESULTS: First, we simulated 100 datasets of gene expressions and polymorphisms, displaying the same gene expression distributions, heterozygosities and heritabilities as in our dataset including 173 genes and 353 genotypes measured in sunflower hybrids. Secondly, we performed a meta-analysis based on six inference methods [least absolute shrinkage and selection operator (Lasso), Random Forests, Bayesian Networks, Markov Random Fields, Ordinary Least Square and fast inference of networks from directed regulation (Findr)] and selected the minimal density networks for better accuracy with 64 edges connecting 79 genes and 0.35 area under precision and recall (AUPR) score on average. We identified that triangles and mutual edges are prone to errors in the inferred networks. Applied on classical datasets without heterozygotes, our strategy produced a 0.65 AUPR score for one dataset of the DREAM5 Systems Genetics Challenge. Finally, we applied our method to an experimental dataset from sunflower hybrids. We successfully inferred a network composed of 105 genes connected by 106 putative regulations with a major connected component. AVAILABILITY AND IMPLEMENTATION: Our inference methodology dedicated to genomic and transcriptomic data is available at https://forgemia.inra.fr/sunrise/inference_methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Humanos , Heterozigoto , Teorema de Bayes , Genômica , Algoritmos
6.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298305

RESUMO

Cultivated sunflower (Helianthus annuus L.) exhibits numerous phenotypic and transcriptomic responses to drought. However, the ways in which these responses vary with differences in drought timing and severity are insufficiently understood. We used phenotypic and transcriptomic data to evaluate the response of sunflower to drought scenarios of different timing and severity in a common garden experiment. Using a semi-automated outdoor high-throughput phenotyping platform, we grew six oilseed sunflower lines under control and drought conditions. Our results reveal that similar transcriptomic responses can have disparate phenotypic effects when triggered at different developmental time points. Leaf transcriptomic responses, however, share similarities despite timing and severity differences (e.g., 523 differentially expressed genes (DEGs) were shared across all treatments), though increased severity elicited greater differences in expression, particularly during vegetative growth. Across treatments, DEGs were highly enriched for genes related to photosynthesis and plastid maintenance. A co-expression analysis identified a single module (M8) enriched in all drought stress treatments. Genes related to drought, temperature, proline biosynthesis, and other stress responses were overrepresented in this module. In contrast to transcriptomic responses, phenotypic responses were largely divergent between early and late drought. Early-stressed sunflowers responded to drought with reduced overall growth, but became highly water-acquisitive during recovery irrigation, resulting in overcompensation (higher aboveground biomass and leaf area) and a greater overall shift in phenotypic correlations, whereas late-stressed sunflowers were smaller and more water use-efficient. Taken together, these results suggest that drought stress at an earlier growth stage elicits a change in development that enables greater uptake and transpiration of water during recovery, resulting in higher growth rates despite similar initial transcriptomic responses.


Assuntos
Helianthus , Helianthus/metabolismo , Transcriptoma , Secas , Fenótipo , Água/metabolismo
7.
Theor Appl Genet ; 135(11): 4049-4063, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35294575

RESUMO

KEY MESSAGE: Crop simulation helps to analyze environmental impacts on crops and provides year-independent context information. This information is of major importance when deciding which cultivar to choose at sowing time. Plant breeding programs design new crop cultivars which, while developed for distinct populations of environments, are nevertheless grown over large areas during their time in the market. Over its cultivation area, the crop is exposed to highly diverse stress patterns caused by climatic uncertainty and multiple management options, which often leads to decreased expected crop performance. In this study, we aim to assess how finer spatial management of genetic resources could reduce the yield variance explained by genotype × environment interactions in a set of cropping environments and ultimately improve the efficiency and stability of crop production. We used modeling and simulation to predict the crop performance resulting from the interaction between cultivar growth and development, climate and soil conditions, and management practices. We designed a computational experiment that evaluated the performance of a collection of commercial sunflower cultivars in a realistic population of cropping conditions in France, built from extensive agricultural surveys. Distinct farming locations sharing similar simulated abiotic stress patterns were clustered together to specify environment types. We then used optimization methods to search for cultivars × environments combinations leading to increased yield expectations. Results showed that a single cultivar choice adapted to the most frequent environment-type in the population is a robust strategy. However, the relevance of cultivar recommendations to specific locations was gradually increasing with the knowledge of pedo-climatic conditions. We argue that this approach while being operational on current genetic material could act synergistically with plant breeding as more diverse material could enable access to cultivars with distinctive traits, more adapted to specific conditions.


Assuntos
Helianthus , Helianthus/genética , França
8.
BMC Genomics ; 22(1): 893, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906091

RESUMO

BACKGROUND: Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. RESULTS: To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. CONCLUSIONS: This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower.


Assuntos
Helianthus , Proteínas de Plantas , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Cell Environ ; 43(5): 1300-1313, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994739

RESUMO

Seed germination is regulated by environmental factors, particularly water availability. Water deficits at the time of sowing impair the establishment of crop plants. Transcriptome and proteome profiling was used to document the responses of sunflower (Helianthus annuus) seeds to moderate water stress during germination in two hybrids that are nominally classed as drought sensitive and drought tolerant. Differences in the water stress-dependent accumulation reactive oxygen species and antioxidant enzymes activities were observed between the hybrids. A pathway-based analysis of the hybrid transcriptomes demonstrated that the water stress-dependent responses of seed metabolism were similar to those of the plant, with a decreased abundance of transcripts encoding proteins associated with metabolism and cell expansion. Moreover, germination under water stress conditions was associated with increased levels of transcripts encoding heat shock proteins. Exposure of germinating seeds to water stress specifically affected the abundance of a small number of proteins, including heat shock proteins. Taken together, these data not only identify factors that are likely to play a key role in drought tolerance during seed germination, but they also demonstrate the importance of the female parent in the transmission of water stress tolerance.


Assuntos
Germinação/fisiologia , Helianthus/fisiologia , Sementes/fisiologia , Antioxidantes/metabolismo , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico/metabolismo , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
10.
BMC Plant Biol ; 19(1): 446, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651254

RESUMO

BACKGROUND: Leaf senescence is a complex process, controlled by multiple genetic and environmental variables. In sunflower, leaf senescence is triggered abruptly following anthesis thereby limiting the capacity of plants to keep their green leaf area during grain filling, which subsequently has a strong impact on crop yield. Recently, we performed a selection of contrasting sunflower inbred lines for the progress of leaf senescence through a physiological, cytological and molecular approach. Here we present a large scale transcriptomic analysis using RNA-seq and its integration with metabolic profiles for two contrasting sunflower inbred lines, R453 and B481-6 (early and delayed senescence respectively), with the aim of identifying metabolic pathways associated to leaf senescence. RESULTS: Gene expression profiles revealed a higher number of differentially expressed genes, as well as, higher expression levels in R453, providing evidence for early activation of the senescence program in this line. Metabolic pathways associated with sugars and nutrient recycling were differentially regulated between the lines. Additionally, we identified transcription factors acting as hubs in the co-expression networks; some previously reported as senescence-associated genes in model species but many are novel candidate genes. CONCLUSIONS: Understanding the onset and the progress of the senescence process in crops and the identification of these new candidate genes will likely prove highly useful for different management strategies to mitigate the impact of senescence on crop yield. Functional characterization of candidate genes will help to develop molecular tools for biotechnological applications in breeding crop yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Helianthus/genética , Biologia de Sistemas , Transcriptoma , Genômica , Helianthus/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Especificidade da Espécie , Fatores de Tempo
11.
Metabolomics ; 15(4): 56, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929085

RESUMO

INTRODUCTION: Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers of response or performance. METHODS AND OBJECTIVES: The experimental material consisted in eight sunflower lines with two line status, four restorers (R, used as males) and four maintainers (B, corresponding to females) routinely used for sunflower hybrid varietal production, respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to characterize sunflower leaf composition in order to investigate the effect of line status genotypes and environmental conditions and to find the best and smallest set of biomarkers for line status and stress response using a custom-made process of variables selection. RESULTS: Five hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such as 1H-NMR, MS-based profiles and targeted analyses of major metabolites. Based on statistical analyses, a limited number of markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological data. Another metabolic marker set was able to discriminate line status. CONCLUSION: This study underlines the potential of metabolic markers for discriminating genotype groups and environmental conditions. Their potential use for prediction is discussed.


Assuntos
Helianthus/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , Biomarcadores/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Helianthus/genética , Metabolômica/métodos , Estresse Fisiológico/fisiologia
12.
Theor Appl Genet ; 131(2): 319-332, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29098310

RESUMO

KEY MESSAGE: This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.


Assuntos
Flores/fisiologia , Estudos de Associação Genética , Helianthus/genética , Modelos Genéticos , Genótipo , Helianthus/fisiologia , Vigor Híbrido , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
13.
Int J Mol Sci ; 19(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127315

RESUMO

Dormancy is an adaptive trait that blocks seed germination until the environmental conditions become favorable for subsequent vegetative plant growth. Seed dormancy is defined as the inability to germinate in favorable conditions. Dormancy is alleviated during after-ripening, a dry storage period, during which dormant (D) seeds unable to germinate become non-dormant (ND), able to germinate in a wide range of environmental conditions. The treatment of dormant seeds with ethylene (D/ET) promotes seed germination, and abscisic acid (ABA) treatment reduces non-dormant (ND/ABA) seed germination in sunflowers (Helianthus annuus). Metabolomic and transcriptomic studies have been performed during imbibition to compare germinating seeds (ND and D/ET) and low-germinating seeds (D and ND/ABA). A PCA analysis of the metabolites content showed that imbibition did not trigger a significant change during the first hours (3 and 15 h). The metabolic changes associated with germination capacity occurred at 24 h and were related to hexoses, as their content was higher in ND and D/ET and was reduced by ABA treatment. At the transcriptional level, a large number of genes were altered oppositely in germinating, compared to the low-germinating seeds. The metabolomic and transcriptomic results were integrated in the interpretation of the processes involved in germination. Our results show that ethylene treatment triggers molecular changes comparable to that of after-ripening treatment, concerning sugar metabolism and ABA signaling inhibition.


Assuntos
Etilenos/metabolismo , Germinação , Helianthus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/metabolismo , Metaboloma , Dormência de Plantas , Sementes/genética , Sementes/metabolismo , Transcriptoma
15.
BMC Plant Biol ; 17(1): 167, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29052528

RESUMO

BACKGROUND: Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation. RESULTS: An efficient and reliable method for inoculation used in field experiments induced stem base necrosis on up to 98% of all plants. A significant genetic variability for PR resistance in the field was detected among the 20 inbred lines of the core collection tested across the two years. For QTL mapping, the PR resistance evaluation was performed on two recombinant inbred lines (RIL) populations derived from the crosses XRQxPSC8 and FUxPAZ2 in two different years. QTL analyses were based on a newly developed consensus genetic map comprising 1007 non-redundant molecular markers. In each of the two RIL populations, different QTL involved in PR partial sunflower resistance were detected. The most significant QTL were detected 49 days post infection (DPI) on LG10 (LOD 7.7) and on LG7 (LOD 12.1) in the XRQxPSC8 and FUxPAZ2 RIL population, respectively. In addition, different QTL were detected on both populations for PR resistance measured between 14 and 35 DPI. In parallel, the incidence of natural attack of P. macdonaldii resulting in BS disease was recorded, showing that in these populations, the genetic of resistance to both diseases is not governed by the same factors. CONCLUSION: This work provides the first insights on the genetic architecture of sunflower PR resistance in the field. Moreover, the separate studies of symptoms on different organs and in time series allowed the identification of a succession of genetic components involved in the sunflower resistance to PR and BS diseases caused by Phoma macdonaldii along the development of the {plant * pathogen} interaction.


Assuntos
Ascomicetos/patogenicidade , Helianthus/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Ascomicetos/fisiologia , Resistência à Doença/genética , Helianthus/genética , Raízes de Plantas/microbiologia , Locos de Características Quantitativas/genética
16.
Plant Cell Environ ; 40(10): 2276-2291, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28418069

RESUMO

Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65 534 tested Single Nucleotide Polymorphisms (SNPs), we identified nine quantitative trait loci controlling oil yield plasticity to cold stress. Associated single nucleotide polymorphisms are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, lipid transfer protein, cystatin, alternative oxidase or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.


Assuntos
Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla , Óleos de Plantas/metabolismo , Estresse Fisiológico/genética , Mapeamento Cromossômico , Temperatura Baixa , Meio Ambiente , Genes de Plantas , Temperatura Alta , Modelos Teóricos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
17.
Theor Appl Genet ; 130(6): 1099-1112, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28255669

RESUMO

KEY MESSAGE: SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools. Mean allele number varied from 1.07 to 1.90. Intra-population variability was slightly reduced according to the number of multiplications since entry but some entries were probably largely homozygous when received. A principal component analysis was used to study inter-population variability. The first 3 axes accounted for 17% of total intra-population variability. The first axis was significantly correlated with seed oil content, more closely than just the distinction between oil and confectionary types. The second axis was related to the presence or absence of restorer genes and the third axis to flowering date and possibly to adaptation to different climates. Our results provide arguments highlighting the effect of the maintenance process on the within population genetic variability as well as on the impact of breeding for major agronomic traits on the between population variability of the collection. Propositions are made to improve sunflower population maintenance procedures to keep maximum genetic variability for future breeding.


Assuntos
Genética Populacional , Helianthus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Alelos , DNA de Plantas/genética , Ligação Genética , Genótipo
18.
Plant Cell Environ ; 38(2): 364-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24811898

RESUMO

Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.


Assuntos
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Germinação , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/genética , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Paraquat/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
19.
New Phytol ; 204(4): 864-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25157915

RESUMO

Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process.


Assuntos
Germinação/fisiologia , Helianthus/genética , Dormência de Plantas/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Polirribossomos/genética , RNA Mensageiro/metabolismo , Sementes/genética
20.
New Phytol ; 203(2): 685-696, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786523

RESUMO

Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its evolution. We examined the responses of 32,423 expressed sequences to drought and to abscisic acid (ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the genetic differentiation among populations (FST ) at nodes. We identified two main hubs in the network that transport nitrate in guard cells. This suggests that nitrate transport is a critical aspect of the sunflower physiological response to drought. We observed that differentiation of the network genes in elite sunflower cultivars is correlated with their position and connectivity. This systems biology approach combined molecular data at different time-scales and identified important physiological processes. At the evolutionary level, we propose that network topology could influence responses to human selection and possibly adaptation to dry environments.


Assuntos
Redes Reguladoras de Genes , Helianthus/genética , Modelos Genéticos , Ácido Abscísico/genética , Algoritmos , Evolução Biológica , Secas , Regulação da Expressão Gênica de Plantas , Helianthus/fisiologia , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA