Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Emerg Infect Dis ; 30(4): 701-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526070

RESUMO

Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.


Assuntos
Saúde Única , Salmonella enterica , Animais , Humanos , Sorogrupo , Antibacterianos/farmacologia , Salmonella/genética , Aves Domésticas , Farmacorresistência Bacteriana Múltipla/genética
2.
J Antimicrob Chemother ; 78(8): 2028-2036, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37358190

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are a frequent cause for visits to primary care providers. In alignment globally, uropathogenic Escherichia coli (UPEC) are the main aetiological agent for UTIs in Norfolk and are increasingly difficult to treat due to multi-drug resistance. OBJECTIVES: We set out to identify which clonal groups and resistance genes are disseminating in the community and hospitals in Norfolk, the first study of its kind for UPEC in this region. METHODS: We collected 199 clinical E. coli isolates causing UTIs in the community and hospital from the Clinical Microbiology laboratory at Norfolk and Norwich University Hospital between August 2021 and January 2022. These were whole-genome sequenced using the Illumina and MinION platforms for in silico MLST and antibiotic resistance determinant detection. RESULTS: The isolates were composed of 70 STs; 8 lineages represented 56.7% of this population: ST73, ST12, ST69, ST131, ST404, ST95, ST127 and ST1193. Importantly, primary UTI screening deemed 6.5% of isolates to be multidrug resistant (MDR), with high rates of resistance to ampicillin (52.1%) and trimethoprim (36.2%) in hospitals. Of concern is the probable clonal expansion of MDR groups ST131 and ST1193 in hospitals and community settings with chromosomally encoded blaCTX-M-15, blaOXA-1 and aac(6')-Ib-cr5. CONCLUSIONS: The burden of reported UTIs in Norfolk is largely caused by non-MDR isolates and mirrors similar UPEC studies nationally and internationally. Continually monitoring samples with consideration of sources will help reduce burden of disease.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Tipagem de Sequências Multilocus , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Reino Unido/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética
3.
Genomics ; 113(5): 3152-3162, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242711

RESUMO

Species and subspecies within the Salmonella genus have been defined for public health purposes by biochemical properties; however, reference laboratories have increasingly adopted sequence-based, and especially whole genome sequence (WGS), methods for surveillance and routine identification. This leads to potential disparities in subspecies definitions, routine typing, and the ability to detect novel subspecies. A large-scale analysis of WGS data from the routine sequencing of clinical isolates was employed to define and characterise Salmonella subspecies population structure, demonstrating that the Salmonella species and subspecies were genetically distinct, including those previously identified through phylogenetic approaches, namely: S. enterica subspecies londinensis (VII), subspecies brasiliensis (VIII), subspecies hibernicus (IX) and subspecies essexiensis (X). The analysis also identified an additional novel subspecies, reptilium (XI). Further, these analyses indicated that S. enterica subspecies arizonae (IIIa) isolates were divergent from the other S. enterica subspecies, which clustered together and, on the basis of ANI analysis, subspecies IIIa was sufficiently distinct to be classified as a separate species, S. arizonae. Multiple phylogenetic and statistical approaches generated congruent results, suggesting that the proposed species and subspecies structure was sufficiently biologically robust for routine application. Biochemical analyses demonstrated that not all subspecies were distinguishable by these means and that biochemical approaches did not capture the genomic diversity of the genus. We recommend the adoption of standardised genomic definitions of species and subspecies and a genome sequence-based approach to routine typing for the identification and definition of novel subspecies.


Assuntos
Salmonella enterica , Genoma Bacteriano , Filogenia , Salmonella/genética , Salmonella enterica/genética , Sorogrupo
4.
J Antimicrob Chemother ; 76(6): 1459-1466, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33704480

RESUMO

BACKGROUND: There are approximately 300 cases of enteric fever reported annually from England and Wales; most are imported infections. Clinical management of enteric fever remains a challenge with the emergence of ESBL-producing strains, especially XDR Salmonella Typhi from Sindh, Pakistan. METHODS: All strains of S. Typhi and Salmonella Paratyphi A isolated from cases presenting with symptoms of enteric fever in England and Wales, between 1 April 2014 and 31 March 2020, were characterized using WGS. Antibiotic susceptibility testing was performed using an agar dilution method. RESULTS: ESBL strains contributed to 69 cases of enteric fever (S. Typhi n = 68, S. Paratyphi A n = 1); 68 were imported (Pakistan n = 64, Iraq n = 2, Bangladesh n = 1 and India n = 1). Ages ranged from 1 to 56 years, 36/69 (52%) were children, 52% were female and the duration of hospital stay ranged from 1 to 23 days. The ESBL phenotype was conferred by the presence of blaCTX-M-15 (S. Typhi n = 67 and S. Paratyphi A n = 1) or blaCTX-M-55 (S. Typhi n = 1). An IncY plasmid harbouring blaCTX-M-15 and qnr was detected in 56 strains from Pakistan. The IncY plasmid was absent in the remaining strains and there was evidence of a 4 kb ISEcpl-blaCTX-M-15-tnp gene cassette insertion into the chromosome at one of three integration points. CONCLUSIONS: Chromosomal integration of blaCTX-M-15 within the XDR Sindh strains may lead to the maintenance of resistance in the absence of antibiotic selection pressure. Empirical treatment of cases of complicated enteric fever returning from Pakistan will henceforth have to include a carbapenem.


Assuntos
Salmonella typhi , Febre Tifoide , Adolescente , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bangladesh , Criança , Pré-Escolar , Cromossomos , Inglaterra/epidemiologia , Feminino , Humanos , Índia , Lactente , Pessoa de Meia-Idade , Paquistão , Salmonella typhi/genética , Febre Tifoide/epidemiologia , País de Gales/epidemiologia , Adulto Jovem , beta-Lactamases/genética
5.
Proc Natl Acad Sci U S A ; 112(3): 863-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25535353

RESUMO

Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼ 60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen-host adaptation.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Genoma Bacteriano , Salmonella/genética , Cromossomos Bacterianos , Pseudogenes
6.
Bioinformatics ; 32(7): 1109-11, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26794317

RESUMO

UNLABELLED: Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology. AVAILABILITY AND IMPLEMENTATION: The optimized sequencing protocol is included as supplementary information. The Bio-Tradis analysis pipeline is available under a GPL license at https://github.com/sanger-pathogens/Bio-Tradis CONTACT: parkhill@sanger.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Elementos de DNA Transponíveis , Biblioteca Gênica , Software , Sequenciamento de Nucleotídeos em Larga Escala
7.
PLoS Genet ; 9(4): e1003456, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637626

RESUMO

Chickens, pigs, and cattle are key reservoirs of Salmonella enterica, a foodborne pathogen of worldwide importance. Though a decade has elapsed since publication of the first Salmonella genome, thousands of genes remain of hypothetical or unknown function, and the basis of colonization of reservoir hosts is ill-defined. Moreover, previous surveys of the role of Salmonella genes in vivo have focused on systemic virulence in murine typhoid models, and the genetic basis of intestinal persistence and thus zoonotic transmission have received little study. We therefore screened pools of random insertion mutants of S. enterica serovar Typhimurium in chickens, pigs, and cattle by transposon-directed insertion-site sequencing (TraDIS). The identity and relative fitness in each host of 7,702 mutants was simultaneously assigned by massively parallel sequencing of transposon-flanking regions. Phenotypes were assigned to 2,715 different genes, providing a phenotype-genotype map of unprecedented resolution. The data are self-consistent in that multiple independent mutations in a given gene or pathway were observed to exert a similar fitness cost. Phenotypes were further validated by screening defined null mutants in chickens. Our data indicate that a core set of genes is required for infection of all three host species, and smaller sets of genes may mediate persistence in specific hosts. By assigning roles to thousands of Salmonella genes in key reservoir hosts, our data facilitate systems approaches to understand pathogenesis and the rational design of novel cross-protective vaccines and inhibitors. Moreover, by simultaneously assigning the genotype and phenotype of over 90% of mutants screened in complex pools, our data establish TraDIS as a powerful tool to apply rich functional annotation to microbial genomes with minimal animal use.


Assuntos
Salmonelose Animal , Salmonella typhimurium , Animais , Galinhas , Intestinos , Salmonella enterica/genética , Salmonella typhimurium/genética , Virulência
8.
Infect Immun ; 83(5): 1778-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690095

RESUMO

The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.


Assuntos
Genoma Bacteriano , Viabilidade Microbiana , Mutagênese Insercional , Mycobacterium marinum/genética , Mycobacterium marinum/fisiologia , Fatores de Virulência/metabolismo , Acanthamoeba castellanii/microbiologia , Animais , Elementos de DNA Transponíveis , Dictyostelium/microbiologia , Humanos , Mycobacterium marinum/crescimento & desenvolvimento , Fagócitos/microbiologia , Virulência , Fatores de Virulência/genética
9.
Lancet ; 384(9955): 1691-7, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25441199

RESUMO

BACKGROUND: Shigellosis (previously bacillary dysentery) was the primary diarrhoeal disease of World War 1, but outbreaks still occur in military operations, and shigellosis causes hundreds of thousands of deaths per year in developing nations. We aimed to generate a high-quality reference genome of the historical Shigella flexneri isolate NCTC1 and to examine the isolate for resistance to antimicrobials. METHODS: In this genomic analysis, we sequenced the oldest extant Shigella flexneri serotype 2a isolate using single-molecule real-time (SMRT) sequencing technology. Isolated from a soldier with dysentery from the British forces fighting on the Western Front in World War 1, this bacterium, NCTC1, was the first isolate accessioned into the National Collection of Type Cultures. We created a reference sequence for NCTC1, investigated the isolate for antimicrobial resistance, and undertook comparative genetics with S flexneri reference strains isolated during the 100 years since World War 1. FINDINGS: We discovered that NCTC1 belonged to a 2a lineage of S flexneri, with which it shares common characteristics and a large core genome. NCTC1 was resistant to penicillin and erythromycin, and contained a complement of chromosomal antimicrobial resistance genes similar to that of more recent isolates. Genomic islands gained in the S flexneri 2a lineage over time were predominately associated with additional antimicrobial resistances, virulence, and serotype conversion. INTERPRETATION: This S flexneri 2a lineage is a well adapted pathogen that has continued to respond to selective pressures. We have created a valuable historical benchmark for shigellae in the form of a high-quality reference sequence for a publicly available isolate. FUNDING: The Wellcome Trust.


Assuntos
Disenteria Bacilar/microbiologia , Genoma Bacteriano/genética , Shigella flexneri/genética , I Guerra Mundial , Anti-Infecciosos/farmacologia , Sequência de Bases , Farmacorresistência Bacteriana/genética , Disenteria Bacilar/tratamento farmacológico , Evolução Molecular , Humanos , Filogenia , Shigella flexneri/efeitos dos fármacos
10.
Nucleic Acids Res ; 41(8): 4549-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23470992

RESUMO

Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks.


Assuntos
Elementos de DNA Transponíveis , Mutagênese Insercional , Salmonella typhi/genética , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Biblioteca Gênica , Genes Bacterianos , Pequeno RNA não Traduzido/genética , RNA não Traduzido/genética , Salmonella typhi/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 109(20): E1277-86, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22538806

RESUMO

More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ(70) (including phoP, slyA, and invF) from which we identified the -10 and -35 motifs of σ(70)-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and <20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Pequeno RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Salmonella typhimurium/genética , Transcrição Gênica/genética , Sequência de Bases , Northern Blotting , Imunoprecipitação da Cromatina , Biblioteca Gênica , Análise em Microsséries , Dados de Sequência Molecular , Oligonucleotídeos/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de RNA/métodos , Sítio de Iniciação de Transcrição
12.
Infect Immun ; 81(3): 838-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275093

RESUMO

Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.


Assuntos
Evolução Biológica , Escherichia coli/classificação , Escherichia coli/genética , Genoma Bacteriano/genética , Doenças das Aves Domésticas/microbiologia , Perus , Animais , DNA Bacteriano/genética , Escherichia coli/patogenicidade , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactoferrina/deficiência , Transtornos Leucocíticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação , Filogenia , Virulência
13.
PLoS Pathog ; 7(8): e1002191, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876672

RESUMO

The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.


Assuntos
Evolução Biológica , Salmonella/genética , Animais , Escherichia coli Enteropatogênica/genética , Genes Bacterianos , Ilhas Genômicas/genética , Humanos , Filogenia , Salmonella enterica/genética , Análise de Sequência de DNA , Translocação Genética , Virulência/genética , Fatores de Virulência/genética
14.
Genome Res ; 19(12): 2308-16, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19826075

RESUMO

Very high-throughput sequencing technologies need to be matched by high-throughput functional studies if we are to make full use of the current explosion in genome sequences. We have generated a very large bacterial mutant pool, consisting of an estimated 1.1 million transposon mutants and we have used genomic DNA from this mutant pool, and Illumina nucleotide sequencing to prime from the transposon and sequence into the adjacent target DNA. With this method, which we have called TraDIS (transposon directed insertion-site sequencing), we have been able to map 370,000 unique transposon insertion sites to the Salmonella enterica serovar Typhi chromosome. The unprecedented density and resolution of mapped insertion sites, an average of one every 13 base pairs, has allowed us to assay simultaneously every gene in the genome for essentiality and generate a genome-wide list of candidate essential genes. In addition, the semiquantitative nature of the assay allowed us to identify genes that are advantageous and those that are disadvantageous for growth under standard laboratory conditions. Comparison of the mutant pool following growth in the presence or absence of ox bile enabled every gene to be assayed for its contribution toward bile tolerance, a trait required of any enteric bacterium and for carriage of S. Typhi in the gall bladder. This screen validated our hypothesis that we can simultaneously assay every gene in the genome to identify niche-specific essential genes.


Assuntos
Proteínas de Bactérias/genética , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Biologia Computacional/métodos , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Salmonella typhi/genética , Análise de Sequência de DNA , Bile/fisiologia , Genes Essenciais , Mutação , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/crescimento & desenvolvimento
15.
J Antimicrob Chemother ; 67(3): 589-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22186876

RESUMO

OBJECTIVES: The initial aim of this study was to use a systems biology approach to analyse a ciprofloxacin-selected multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium, L664. METHODS: The whole genome sequence and transcriptome of L664 were analysed. Site-directed mutagenesis to recreate each mutation was carried out, followed by phenotypic characterization and mutation frequency analysis. As a mutation in the TCA cycle was detected we tested the controversial hypothesis regarding the bacterial response to bactericidal antibiotics, put forward by Kohanski et al. (Cell 2007; 130: 797-810 and Mol Cell 2010; 37: 311-20), that exposure of bacteria to agents such as ciprofloxacin produces reactive oxygen species (ROS), which transiently increase the mutation rate giving rise to MDR bacteria. RESULTS: L664 contained a mutation in ramR that conferred MDR. A mutation in tctA affected the TCA cycle and conferred the inability to grow on minimal agar. The virulence of L664 was not attenuated. Ciprofloxacin exposure produced ROS in L664 and SL1344 (tctA::aph), but it was reduced and occurred later. There were no significant differences in the rates of killing or mutations per generation to antibiotic resistance between the strains. CONCLUSIONS: Whilst we confirm production of ROS in response to ciprofloxacin, we have no data to support the hypothesis that this leads to selection of MDR strains. Our results indicate that the mutations in tctA and glgA were random as they did not pre-exist in the parental strain, and that the mutation in tctA did not provide a survival advantage or disadvantage in the presence of antibiotic.


Assuntos
Ciprofloxacina/farmacologia , Ciclo do Ácido Cítrico , Farmacorresistência Bacteriana Múltipla , Viabilidade Microbiana/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Seleção Genética , Antibacterianos/farmacologia , Humanos , Mutagênese Sítio-Dirigida , Mutação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/metabolismo , Biologia de Sistemas/métodos , Transcriptoma
16.
Appl Environ Microbiol ; 78(7): 2147-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267673

RESUMO

The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Conjugação Genética , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/ultraestrutura , DNA Bacteriano/genética , Flagelos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Ribotipagem , Especificidade da Espécie
17.
Metabolites ; 12(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35208211

RESUMO

Staphylococcus epidermidis is a common commensal of collagen-rich regions of the body, such as the skin, but also represents a threat to patients with medical implants (joints and heart), and to preterm babies. Far less studied than Staphylococcus aureus, the mechanisms behind this increasingly recognised pathogenicity are yet to be fully understood. Improving our knowledge of the metabolic processes that allow S. epidermidis to colonise different body sites is key to defining its pathogenic potential. Thus, we have constructed a fully curated, genome-scale metabolic model for S. epidermidis RP62A, and investigated its metabolic properties with a focus on substrate auxotrophies and its utilisation for energy and biomass production. Our results show that, although glucose is available in the medium, only a small portion of it enters the glycolytic pathways, whils most is utilised for the production of biofilm, storage and the structural components of biomass. Amino acids, proline, valine, alanine, glutamate and arginine, are preferred sources of energy and biomass production. In contrast to previous studies, we have shown that this strain has no real substrate auxotrophies, although removal of proline from the media has the highest impact on the model and the experimental growth characteristics. Further study is needed to determine the significance of proline, an abundant amino acid in collagen, in S. epidermidis colonisation.

18.
Evol Lett ; 6(6): 426-437, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579163

RESUMO

In addition to nucleotide variation, many bacteria also undergo changes at a much larger scale via rearrangement of their genome structure (GS) around long repeat sequences. These rearrangements result in genome fragments shifting position and/or orientation in the genome without necessarily affecting the underlying nucleotide sequence. To date, scalable techniques have not been applied to GS identification, so it remains unclear how extensive this variation is and the extent of its impact upon gene expression. However, the emergence of multiplexed, long-read sequencing overcomes the scale problem, as reads of several thousand bases are routinely produced that can span long repeat sequences to identify the flanking chromosomal DNA, allowing GS identification. Genome rearrangements were generated in Salmonella enterica serovar Typhi through long-term culture at ambient temperature. Colonies with rearrangements were identified via long-range PCR and subjected to long-read nanopore sequencing to confirm genome variation. Four rearrangements were investigated for differential gene expression using transcriptomics. All isolates with changes in genome arrangement relative to the parent strain were accompanied by changes in gene expression. Rearrangements with similar fragment movements demonstrated similar changes in gene expression. The most extreme rearrangement caused a large imbalance between the origin and terminus of replication and was associated with differential gene expression as a factor of distance moved toward or away from the origin of replication. Genome structure variation may provide a mechanism through which bacteria can quickly adapt to new environments and warrants routine assessment alongside traditional nucleotide-level measures of variation.

19.
Microb Genom ; 8(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748517

RESUMO

Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been elucidated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar Typhi isolate. It carries bla CTX-M-15, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route for bla CTX-M-15 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacterial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than previously thought.


Assuntos
Bacteriófagos , Salmonella typhi , Salmonella typhi/genética , Bacteriófagos/genética , Bacteriófago P1/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , beta-Lactamases/genética
20.
Access Microbiol ; 4(7): acmi000371, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003217

RESUMO

Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA