Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 100(3): 186-204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148436

RESUMO

Anaphylatoxin C3a is a small signaling polypeptide that is generated during complement activation. C3a is involved in the regulation of various innate and adaptive immune system processes; however, the role of C3a in macrophage differentiation and polarization is poorly elucidated. Here we showed that C3a impairs alternative M2 polarization of human macrophages and suppressed CD206, IL1Ra and CCL22 expression. C3a leads to a decrease of nuclear receptor PPARγ expression via the ERK1/2 signaling pathway, resulting in repressed PPARγ-dependent activation of CD36, FABP4 and LXRα genes and blunted response to an LXR ligand TO901317. Using small interfering RNA and agonist/antagonist approaches we showed that C3a decreases CD206, IL1Ra and CCL22 transcription at least partly in a PPARγ-dependent manner in M2 macrophages. Moreover, C3a impairs efferocytosis by M2 macrophages and inhibits their migratory activity. By contrast, macrophages treated with C3a during differentiation show blunted response to lipopolysaccharide stimulation owing to downregulation of TLR4 and lipid raft content. At the same time, differentiation of macrophages with C3a does not change M1 polarization in interferon gamma (IFNγ) and IFNγ + lipopolysaccharide-treated macrophages. These data provide a novel role of complement system and C3a in the regulation of M2 macrophage polarizations and suggest crosstalk between C3a, TLR4, PPARγ and LXR signaling pathways.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Anafilatoxinas/metabolismo , Humanos , Interferon gama/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Biochemistry (Mosc) ; 87(11): 1252-1259, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509728

RESUMO

Adiponectin is an adipose tissue hormone, participating in energy metabolism and involved in atherogenesis. Previously, it was found that adiponectin increases expression of the APOA1 (apolipoprotein A-1) gene in hepatocytes, but the mechanisms of this effect remained unexplored. Our aim was to investigate the role of adiponectin receptors AdipoR1/R2, AMP-activated protein kinase (AMPK), nuclear peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRs) in mediating the action of adiponectin on hepatic APOA1 expression in human hepatoma HepG2 cells. The level of APOA1 expression was determined by RT-qPCR and ELISA. We showed that the siRNA-mediated knockdown of genes coding for AdipoR1, AdipoR2, AMPK, PPARα, and LXRα and ß prevented adiponectin-induced APOA1 expression in HepG2 cells and demonstrated that interaction of PPARα and LXRs with the APOA1 gene hepatic enhancer is important for the adiponectin-dependent APOA1 transcription. The results of this study point out to the involvement of both types of adiponectin receptors, AMPK, PPARα, and LXRs in the adiponectin-dependent upregulation of the APOA1 expression.


Assuntos
Adiponectina , PPAR alfa , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Receptores X do Fígado/genética , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Células Hep G2 , Apolipoproteína A-I/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Expressão Gênica
3.
Biochemistry (Mosc) ; 86(10): 1201-1213, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903152

RESUMO

Apolipoprotein A-I (ApoA-I) is a key component of reverse cholesterol transport in humans. In the previous studies, we demonstrated expression of the apoA-I gene in human monocytes and macrophages; however, little is known on the regulation of the apoA-I expression in macrophages during the uptake of modified low-density lipoprotein (LDL), which is one of the key processes in the early stages of atherogenesis leading to formation of foam cells. Here, we demonstrate a complex nature of the apoA-I regulation in human macrophages during the uptake of oxidized LDL (oxLDL). Incubation of macrophages with oxLDL induced expression of the apoA-I gene within the first 24 hours, but suppressed it after 48 h. Both effects depended on the interaction of oxLDL with the TLR4 receptor, rather than on the oxLDL uptake by the macrophages. The oxLDL-mediated downregulation of the apoA-I gene depended on the ERK1/2 and JNK cascades, as well as on the NF-κB cascade.


Assuntos
Apolipoproteína A-I/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Apolipoproteína A-I/biossíntese , Apolipoproteína A-I/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , NF-kappa B/metabolismo , Células THP-1
4.
Mol Cell Biochem ; 448(1-2): 211-223, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29442267

RESUMO

Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRß by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRß binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.


Assuntos
Apolipoproteína A-I/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , PPAR alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Macrófagos/citologia , Monócitos/citologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA