Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27238023

RESUMO

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Assuntos
Bacillus subtilis/genética , Genes Bacterianos , Genes Essenciais , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Redes Reguladoras de Genes , Terapia de Alvo Molecular
3.
Cell ; 152(5): 1173-83, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452860

RESUMO

Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale.


Assuntos
Endodesoxirribonucleases/genética , Escherichia coli/genética , Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , Streptococcus pyogenes/enzimologia , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Expressão Gênica , Streptococcus pyogenes/genética , Elongação da Transcrição Genética , Iniciação da Transcrição Genética , Pequeno RNA não Traduzido
4.
Cell ; 154(2): 442-51, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23849981

RESUMO

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Assuntos
Proteínas de Bactérias/genética , Marcação de Genes/métodos , Streptococcus pyogenes , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Pequeno RNA não Traduzido
5.
Cell ; 132(6): 971-82, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18358810

RESUMO

Transcription termination by bacterial RNA polymerase (RNAP) occurs at sequences coding for a GC-rich RNA hairpin followed by a U-rich tract. We used single-molecule techniques to investigate the mechanism by which three representative terminators (his, t500, and tR2) destabilize the elongation complex (EC). For his and tR2 terminators, loads exerted to bias translocation did not affect termination efficiency (TE). However, the force-dependent kinetics of release and the force-dependent TE of a mutant imply a forward translocation mechanism for the t500 terminator. Tension on isolated U-tracts induced transcript release in a manner consistent with RNA:DNA hybrid shearing. We deduce that different mechanisms, involving hypertranslocation or shearing, operate at terminators with different U-tracts. Tension applied to RNA at terminators suggests that closure of the final 2-3 hairpin bases destabilizes the hybrid and that competing RNA structures modulate TE. We propose a quantitative, energetic model that predicts the behavior for these terminators and mutant variants.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Regiões Terminadoras Genéticas , Regiões 5' não Traduzidas , Bacteriófago lambda/química , Bacteriófago lambda/genética , Bacteriófagos/química , Bacteriófagos/genética , Sequência de Bases , DNA Bacteriano , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Cinética , Modelos Biológicos , Conformação de Ácido Nucleico , Salmonella typhimurium/química , Salmonella typhimurium/genética , Termodinâmica , Transcrição Gênica
6.
Mol Cell ; 41(3): 249-62, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21292158

RESUMO

Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Humanos , Nucleossomos , Ligação Proteica , Transporte Proteico
7.
Proc Natl Acad Sci U S A ; 109(17): 6555-60, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493230

RESUMO

During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate.


Assuntos
RNA Polimerase II/metabolismo , Transcrição Gênica , Cinética , Nucleotídeos/metabolismo , Saccharomyces cerevisiae/enzimologia
8.
Nat Commun ; 12(1): 2357, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883548

RESUMO

Cell-free RNA (cfRNA) is a promising analyte for cancer detection. However, a comprehensive assessment of cfRNA in individuals with and without cancer has not been conducted. We perform the first transcriptome-wide characterization of cfRNA in cancer (stage III breast [n = 46], lung [n = 30]) and non-cancer (n = 89) participants from the Circulating Cell-free Genome Atlas (NCT02889978). Of 57,820 annotated genes, 39,564 (68%) are not detected in cfRNA from non-cancer individuals. Within these low-noise regions, we identify tissue- and cancer-specific genes, defined as "dark channel biomarker" (DCB) genes, that are recurrently detected in individuals with cancer. DCB levels in plasma correlate with tumor shedding rate and RNA expression in matched tissue, suggesting that DCBs with high expression in tumor tissue could enhance cancer detection in patients with low levels of circulating tumor DNA. Overall, cfRNA provides a unique opportunity to detect cancer, predict the tumor tissue of origin, and determine the cancer subtype.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Neoplasias Pulmonares/genética , Transcriptoma , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Ácidos Nucleicos Livres/sangue , Estudos de Coortes , Bases de Dados de Ácidos Nucleicos , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/sangue , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética
9.
Chem Phys ; 350(1-3): 165-174, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18574520

RESUMO

The excited-state dynamics of the RNA homopolymer of cytosine and of the 18-mer (dC)(18) were studied by steady-state and time-resolved absorption and emission spectroscopy. At pH 6.8, excitation of poly(rC) by a femtosecond UV pump pulse produces excited states that decay up to one order of magnitude more slowly than the excited states formed in the mononucleotide cytidine 5'-monophosphate under the same conditions. Even slower relaxation is observed for the hemiprotonated, self-associated form of poly(rC), which is stable at acidic pH. Transient absorption and time-resolved fluorescence signals for (dC)(18) at pH 6.8 are similar to ones observed for poly(rC) near pH 4, indicating that hemiprotonated structures are found in DNA C tracts at neutral pH. In both systems, there is evidence for two kinds of emitting states with lifetimes of ~100 ps and slightly more than 1 ns. The former states are responsible for the bulk of emission from the hemiprotonated structures. Evidence suggests that slow electronic relaxation in these self-complexes is the result of vertical base stacking. The similar signals from RNA and DNA C tracts suggest a common base-stacked structure, which may be identical with that of i-motif DNA.

11.
Science ; 347(6217): 75-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25554787

RESUMO

In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").


Assuntos
Biossíntese de Peptídeos Independentes de Ácido Nucleico , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Conformação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/metabolismo , Proteínas de Ligação a RNA , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Ubiquitina-Proteína Ligases/ultraestrutura
12.
Science ; 344(6187): 1042-7, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24789973

RESUMO

Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.


Assuntos
Códon de Iniciação/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica/genética , Elementos Reguladores de Transcrição , Transcrição Gênica , Sequência de Bases , Sequência Consenso , RNA Polimerases Dirigidas por DNA/metabolismo
13.
Nat Protoc ; 8(11): 2180-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24136345

RESUMO

Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1-2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inativação Gênica , Interferência de RNA , Proteínas de Bactérias/genética , Regulação da Expressão Gênica , Técnicas Genéticas , Streptococcus pyogenes/genética
14.
Transcription ; 3(3): 146-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22771949

RESUMO

Single-molecule studies of RNA polymerase II (RNAP II) require high yields of transcription elongation complexes (TECs) with long DNA tethers upstream and downstream of the TEC. Here we report on a robust system to reconstitute both yeast and mammalian RNAP II with an efficiency of ~80% into TECs that elongate with an efficiency of ~90%, followed by rapid, high-efficiency tripartite ligation of long DNA fragments upstream and downstream of the reconstituted TECs. Single mammalian and yeast TECs reconstituted with this method have been successfully used in an optical-trapping transcription assay capable of applying forces that either assist or hinder transcript elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sequência de Bases , Fragmentação do DNA , Mamíferos/genética , Mamíferos/metabolismo , Dados de Sequência Molecular , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
15.
Nat Chem Biol ; 3(4): 193-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17372599

RESUMO

Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.


Assuntos
Bioquímica/métodos , Biofísica/métodos , Comunicação Interdisciplinar , Bioquímica/instrumentação , Biofísica/instrumentação
16.
Mol Cell ; 23(2): 231-9, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857589

RESUMO

Transcriptional elongation and termination by RNA polymerase (RNAP) are controlled by interactions among the nascent RNA, DNA, and RNAP that comprise the ternary transcription elongation complex (TEC). To probe the effects of cotranscriptionally folded RNA hairpins on elongation as well as the stability of the TEC, we developed a single-molecule assay to monitor RNA elongation by Escherichia coli RNAP molecules while applying controlled loads to the nascent RNA that favor forward translocation. Remarkably, forces up to 30 pN, twice those required to disrupt RNA secondary structure, did not significantly affect enzyme processivity, transcription elongation rates, pause frequencies, or pause lifetimes. These results indicate that ubiquitous transcriptional pausing is not a consequence of the formation of hairpins in the nascent RNA. The ability of the TEC to sustain large loads on the transcript reflects a tight binding of RNA within the TEC and has important implications for models of transcriptional termination.


Assuntos
Processamento Pós-Transcricional do RNA , RNA/fisiologia , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia , Escherichia coli , Cinética , Modelos Biológicos , Conformação de Ácido Nucleico , RNA/biossíntese , RNA/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA