Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Environ Sci Technol ; 58(21): 9017-9030, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753980

RESUMO

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.


Assuntos
Conjugação Genética , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Transferência Genética Horizontal
2.
Bioinformatics ; 38(6): 1727-1728, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951622

RESUMO

SUMMARY: Comparing genomic loci of a given bacterial gene across strains and species can provide insights into their evolution, including information on e.g. acquired mobility, the degree of conservation between different taxa or indications of horizontal gene transfer events. While thousands of bacterial genomes are available to date, there is no software that facilitates comparisons of individual gene loci for a large number of genomes. GEnView (Genetic Environment View) is a Python-based pipeline for the comparative analysis of gene-loci in a large number of bacterial genomes, providing users with automated, taxon-selective access to the >800.000 genomes and plasmids currently available in the NCBI Assembly and RefSeq databases, and is able to process local genomes that are not deposited at NCBI, enabling searches for genomic sequences and to analyze their genetic environments through the interactive visualization and extensive metadata files created by GEnView. AVAILABILITY AND IMPLEMENTATION: GEnView is implemented in Python 3. Instructions for download and usage can be found at https://github.com/EbmeyerSt/GEnView under GLP3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Filogenia , Genoma Bacteriano , Plasmídeos/genética
3.
PLoS Biol ; 18(4): e3000698, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243442

RESUMO

Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high-impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions-a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.


Assuntos
Acesso à Informação , Metagenoma , Publicações/estatística & dados numéricos , Bibliometria , Fator de Impacto de Revistas , Publicação de Acesso Aberto
4.
Environ Sci Technol ; 56(21): 14982-14993, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759608

RESUMO

Wastewater-based surveillance (WBS) for disease monitoring is highly promising but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. Herein, we describe a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage that enables assessment of 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends in ARGs, such as antibiotic concentrations. Across an internationally sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance ARGs being discriminatory, respectively. Regional trends in measured antibiotic concentrations differed from trends expected from public sales data. This could reflect unaccounted uses, captured only by the WBS approach. If properly benchmarked, antibiotic WBS might complement public sales and consumption statistics in the future. The WBS approach defined herein demonstrates multisite comparability and sensitivity to local/regional factors.


Assuntos
Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Genes Bacterianos , Antibacterianos/farmacologia
5.
J Antimicrob Chemother ; 76(1): 117-123, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005957

RESUMO

BACKGROUND: Metallo-ß-lactamases (MBLs) are enzymes that use zinc-dependent hydrolysis to confer resistance to almost all available ß-lactam antibiotics. They are hypothesized to originate from commensal and environmental bacteria, from where some have mobilized and transferred horizontally to pathogens. The current phylogeny of MBLs, however, is biased as it is founded largely on genes encountered in pathogenic bacteria. This incompleteness is emphasized by recent findings of environmental MBLs with new forms of zinc binding sites and atypical functional profiles. OBJECTIVES: To expand the phylogeny of MBLs to provide a more accurate view of their evolutionary history. METHODS: We searched more than 16 terabases of genomic and metagenomic data for MBLs of the three subclasses B1, B2 and B3 using the validated fARGene method. Predicted genes, together with the previously known ones, were used to infer phylogenetic trees. RESULTS: We identified 2290 unique MBL genes forming 817 gene families, of which 741 were previously uncharacterized. MBLs from subclasses B1 and B3 separated into distinct monophyletic groups, in agreement with their taxonomic and functional properties. We present evidence that clinically associated MBLs were mobilized from Proteobacteria. Additionally, we identified three new variants of the zinc binding sites, indicating that the functional repertoire is broader than previously reported. CONCLUSIONS: Based on our results, we recommend that the nomenclature of MBLs is refined into the phylogenetic groups B1.1-B1.5 and B3.1-B3.4 that more accurately describe their molecular and functional characteristics. Our results will also facilitate the annotation of novel MBLs, reflecting their taxonomic organization and evolutionary origin.


Assuntos
Metagenômica , beta-Lactamases , Antibacterianos , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Humanos , Filogenia , beta-Lactamases/genética , beta-Lactamases/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34902088

RESUMO

To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300 m away from WWTPs; N = 431) and distant residents (living ≥ 1000 m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage.

7.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958716

RESUMO

Comparative genomics identified the environmental bacterial genus Shinella as the most likely origin of the class A carbapenemases BKC-1 and GPC-1. Available sequences and PCR analyses of additional Shinella species revealed homologous ß-lactamases showing up to 85.4% and 93.3% amino acid identity to both enzymes, respectively. The genes conferred resistance to ß-lactams once expressed in Escherichia coliblaBKC-1 likely evolved from a putative ancestral Shinella gene with higher homology through duplication of a gene fragment.


Assuntos
Antibacterianos , Proteínas de Bactérias , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Testes de Sensibilidade Microbiana , Shigella/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia
8.
J Antimicrob Chemother ; 75(9): 2554-2563, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464640

RESUMO

BACKGROUND: MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to ß-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure-activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. OBJECTIVES: To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. METHODS: The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different ß-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). RESULTS: Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. CONCLUSIONS: These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.


Assuntos
Escherichia coli , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30397053

RESUMO

While carbapenem resistance in Gram-negative bacteria is mainly due to the production of efficient carbapenemases, ß-lactamases with a narrower spectrum may also contribute to resistance when combined with additional mechanisms. OXA-10-type class D ß-lactamases, previously shown to be weak carbapenemases, could represent such a case. In this study, two novel OXA-10 variants were identified as the sole carbapenem-hydrolyzing enzymes in meropenem-resistant enterobacteria isolated from hospital wastewater and found by next-generation sequencing to express additional ß-lactam resistance mechanisms. The new variants, OXA-655 and OXA-656, were carried by two related IncQ1 broad-host-range plasmids. Compared to the sequence of OXA-10, they both harbored a Thr26Met substitution, with OXA-655 also bearing a leucine instead of a valine in position 117 of the SAV catalytic motif. Susceptibility profiling of laboratory strains replicating the natural blaOXA plasmids and of recombinant clones expressing OXA-10 and the novel variants in an isogenic background indicated that OXA-655 is a more efficient carbapenemase. The carbapenemase activity of OXA-655 is due to the Val117Leu substitution, as shown by steady-state kinetic experiments, where the kcat of meropenem hydrolysis was increased 4-fold. In contrast, OXA-655 had no activity toward oxyimino-ß-lactams, while its catalytic efficiency against oxacillin was significantly reduced. Moreover, the Val117Leu variant was more efficient against temocillin and cefoxitin. Molecular dynamics indicated that Val117Leu affects the position 117-Leu155 interaction, leading to structural shifts in the active site that may alter carbapenem alignment. The evolutionary potential of OXA-10 enzymes toward carbapenem hydrolysis combined with their spread by promiscuous plasmids indicates that they may pose a future clinical threat.


Assuntos
Antibacterianos/química , Enterobacteriaceae/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/química , Substituição de Aminoácidos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , Domínio Catalítico , Cefoxitina/química , Cefoxitina/metabolismo , Cefoxitina/farmacologia , Clonagem Molecular , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Expressão Gênica , Hospitais , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Meropeném/química , Meropeném/metabolismo , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxacilina/química , Oxacilina/metabolismo , Oxacilina/farmacologia , Penicilinas/química , Penicilinas/metabolismo , Penicilinas/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Águas Residuárias/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
J Antimicrob Chemother ; 74(5): 1202-1206, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753583

RESUMO

OBJECTIVES: To investigate the origin of CMY-1/MOX-family ß-lactamases. METHODS: Publicly available genome assemblies were screened for CMY-1/MOX genes. The loci of CMY-1/MOX genes were compared with respect to synteny and nucleotide identity, and subjected to phylogenetic analysis. RESULTS: The chromosomal ampC genes of several Aeromonas species were highly similar to known mobile CMY-1/MOX variants. Annotation and sequence comparison revealed nucleotide identities >98% and conserved syntenies between MOX-1-, MOX-2- and MOX-9-associated mobile sequences and the chromosomal Aeromonas sanarellii, Aeromonas caviae and Aeromonas media ampC loci. Furthermore, the phylogenetic analysis showed that MOX-1, MOX-2 and MOX-9 formed three distinct monophyletic groups with the chromosomal ampC genes of A. sanarellii, A. caviae and A. media, respectively. CONCLUSIONS: Our findings show that three CMY-1/MOX-family ß-lactamases were mobilized independently from three Aeromonas species and hence shine new light on the evolution and emergence of mobile antibiotic resistance genes.


Assuntos
Aeromonas/classificação , Aeromonas/genética , Proteínas de Bactérias/genética , Família Multigênica , beta-Lactamases/genética , Aeromonas/enzimologia , Proteínas de Bactérias/metabolismo , Ordem dos Genes , Loci Gênicos , Humanos , Fases de Leitura Aberta , Filogenia , beta-Lactamases/metabolismo
11.
Environ Health ; 18(1): 95, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694717

RESUMO

BACKGROUND: Emissions of high concentrations of antibiotics from manufacturing sites select for resistant bacteria and may contribute to the emergence of new forms of resistance in pathogens. Many scientists, industry, policy makers and other stakeholders recognize such pollution as an unnecessary and unacceptable risk to global public health. An attempt to assess and reduce such discharges, however, quickly meets with complex realities that need to be understood to identify effective ways to move forward. This paper charts relevant key actor-types, their main stakes and interests, incentives that can motivate them to act to improve the situation, as well as disincentives that may undermine such motivation. METHODS: The actor types and their respective interests have been identified using research literature, publicly available documents, websites, and the knowledge of the authors. RESULTS: Thirty-three different actor-types were identified, representing e.g. commercial actors, public agencies, states and international institutions. These are in complex ways connected by interests that sometimes may conflict and sometimes pull in the same direction. Some actor types can act to create incentives and disincentives for others in this area. CONCLUSIONS: The analysis demonstrates and clarifies the challenges in addressing industrial emissions of antibiotics, notably the complexity of the relations between different types of actors, their international dependency and the need for transparency. The analysis however also suggests possible ways of initiating incentive-chains to eventually improve the prospects of motivating industry to reduce emissions. High-resource consumer states, especially in multinational cooperation, hold a key position to initiate such chains.


Assuntos
Antibacterianos , Comércio , Indústria Manufatureira/organização & administração , Poluição Química da Água/prevenção & controle , Indústria Manufatureira/legislação & jurisprudência , Instalações Industriais e de Manufatura , Poluição Química da Água/legislação & jurisprudência
12.
Environ Health ; 18(1): 108, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830999

RESUMO

Following publication of the original article [1], the author explained that there are multiple errors in the original article.

13.
Beilstein J Org Chem ; 15: 1468-1474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354863

RESUMO

The synthesis and antibacterial activity of two new highly truncated derivatives of the natural product abyssomicin C are reported. This work outlines the limits of structural truncation of the natural product and consequently provides insights for further structure-activity relationship studies towards novel antibiotics targeting 4-amino-4-deoxychorismate (ADC) synthase. Specifically, it is demonstrated that the synthetically challenging bicyclic motif is essential for activity towards methicillin-resistant Staphylococcus aureus (MRSA).

14.
BMC Genomics ; 18(1): 682, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865446

RESUMO

BACKGROUND: Fluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections. Plasmid-mediated qnr genes provide resistance to fluoroquinolones in many bacterial species and are increasingly encountered in clinical settings. Over the last decade, several families of qnr genes have been discovered and characterized, but their true prevalence and diversity still remain unclear. In particular, environmental and host-associated bacterial communities have been hypothesized to maintain a large and unknown collection of qnr genes that could be mobilized into pathogens. RESULTS: In this study we used computational methods to screen genomes and metagenomes for novel qnr genes. In contrast to previous studies, we analyzed an almost 20-fold larger dataset comprising almost 13 terabases of sequence data. In total, 362,843 potential qnr gene fragments were identified, from which 611 putative qnr genes were reconstructed. These gene sequences included all previously described plasmid-mediated qnr gene families. Fifty-two of the 611 identified qnr genes were reconstructed from metagenomes, and 20 of these were previously undescribed. All of the novel qnr genes were assembled from metagenomes associated with aquatic environments. Nine of the novel genes were selected for validation, and six of the tested genes conferred consistently decreased susceptibility to ciprofloxacin when expressed in Escherichia coli. CONCLUSIONS: The results presented in this study provide additional evidence for the ubiquitous presence of qnr genes in environmental microbial communities, expand the number of known qnr gene variants and further elucidate the diversity of this class of resistance genes. This study also strengthens the hypothesis that environmental bacterial communities act as sources of previously uncharacterized qnr genes.


Assuntos
Bases de Dados Genéticas , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Metagenômica , Humanos
15.
J Antimicrob Chemother ; 72(10): 2690-2703, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673041

RESUMO

Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Metagenômica/métodos , Microbiota/genética , Mapeamento Cromossômico/métodos , Interpretação Estatística de Dados , Bases de Dados Genéticas , Microbioma Gastrointestinal/genética , Genes Bacterianos/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lagos/microbiologia
16.
Biometals ; 30(2): 307-311, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28210928

RESUMO

Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator-prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments.


Assuntos
Arsênio/metabolismo , Dictyostelium/fisiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Arsênio/toxicidade , Cobre/metabolismo , Cobre/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Cadeia Alimentar , Deleção de Genes , Viabilidade Microbiana , Óperon , Plasmídeos/química , Plasmídeos/metabolismo
17.
Nucleic Acids Res ; 42(Database issue): D737-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24304895

RESUMO

Antibiotic resistance has become a major human health concern due to widespread use, misuse and overuse of antibiotics. In addition to antibiotics, antibacterial biocides and metals can contribute to the development and maintenance of antibiotic resistance in bacterial communities through co-selection. Information on metal and biocide resistance genes, including their sequences and molecular functions, is, however, scattered. Here, we introduce BacMet (http://bacmet.biomedicine.gu.se)--a manually curated database of antibacterial biocide- and metal-resistance genes based on an in-depth review of the scientific literature. The BacMet database contains 470 experimentally verified resistance genes. In addition, the database also contains 25 477 potential resistance genes collected from public sequence repositories. All resistance genes in the BacMet database have been organized according to their molecular function and induced resistance phenotype.


Assuntos
Antibacterianos/farmacologia , Bases de Dados Genéticas , Desinfetantes/farmacologia , Metais/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Internet
18.
BMC Genomics ; 16: 964, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26576951

RESUMO

BACKGROUND: Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. RESULTS: Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative (p < 0.0001) and carry toxin-antitoxin systems (p < 0.0001) than plasmids without resistance genes. CONCLUSIONS: This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions.


Assuntos
Antibacterianos/farmacologia , Bactérias/genética , Desinfetantes/farmacologia , Resistência Microbiana a Medicamentos/genética , Genômica , Metais/farmacologia , Seleção Genética , Aminoglicosídeos/farmacologia , Antitoxinas/metabolismo , Bactérias/efeitos dos fármacos , Toxinas Bacterianas/genética , Bases de Dados Genéticas , Meio Ambiente , Evolução Molecular , Genes Bacterianos/genética , Humanos , Plasmídeos/genética , Sulfonamidas/farmacologia , Resistência beta-Lactâmica/genética
19.
Antimicrob Agents Chemother ; 59(10): 6551-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259788

RESUMO

Previous studies of antibiotic resistance dissemination by travel have, by targeting only a select number of cultivable bacterial species, omitted most of the human microbiome. Here, we used explorative shotgun metagenomic sequencing to address the abundance of >300 antibiotic resistance genes in fecal specimens from 35 Swedish students taken before and after exchange programs on the Indian peninsula or in Central Africa. All specimens were additionally cultured for extended-spectrum beta-lactamase (ESBL)-producing enterobacteria, and the isolates obtained were genome sequenced. The overall taxonomic diversity and composition of the gut microbiome remained stable before and after travel, but there was an increasing abundance of Proteobacteria in 25/35 students. The relative abundance of antibiotic resistance genes increased, most prominently for genes encoding resistance to sulfonamide (2.6-fold increase), trimethoprim (7.7-fold), and beta-lactams (2.6-fold). Importantly, the increase observed occurred without any antibiotic intake. Of 18 students visiting the Indian peninsula, 12 acquired ESBL-producing Escherichia coli, while none returning from Africa were positive. Despite deep sequencing efforts, the sensitivity of metagenomics was not sufficient to detect acquisition of the low-abundant genes responsible for the observed ESBL phenotype. In conclusion, metagenomic sequencing of the intestinal microbiome of Swedish students returning from exchange programs in Central Africa or the Indian peninsula showed increased abundance of genes encoding resistance to widely used antibiotics.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Adulto , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Testes de Sensibilidade Microbiana , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Sulfonamidas/farmacologia , Trimetoprima/farmacologia , Adulto Jovem , beta-Lactamas/farmacologia
20.
J Antimicrob Chemother ; 70(10): 2709-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26124213

RESUMO

OBJECTIVES: Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. METHODS: Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. RESULTS: The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. CONCLUSIONS: Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Lagos/microbiologia , Fosfoproteínas/genética , Plasmídeos/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Conjugação Genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ordem dos Genes , Transferência Genética Horizontal , Variação Genética , Sedimentos Geológicos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Poluição Química da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA