Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(24): e2309595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38152956

RESUMO

Low-dimensional bismuth oxychalcogenides have shown promising potential in optoelectronics due to their high stability, photoresponse, and carrier mobility. However, the relevant studies on deep understanding for Bi2O2S is quite limited. Here, comprehensive experimental and computational investigations are conducted in the regulated band structure, nonlinear optical (NLO) characteristics, and carrier dynamics of Bi2O2S nanosheets via defect engineering, taking O vacancy (OV) and substitutional Se doping as examples. As the OV continuously increased to ≈35%, the optical bandgaps progressively narrow from ≈1.21 to ≈0.81 eV and NLO wavelengths are extended to near-infrared regions with enhanced saturable absorption. Simultaneously, the relaxation processes are effectively accelerated from tens of picoseconds to several picoseconds, as the generated defect energy levels can serve as both additional absorption cross-sections and fast relaxation channels supported by theoretical calculations. Furthermore, substitutional Se doping in Bi2O2S nanosheets also modulate their optical properties with the similar trends. As a proof-of-concept, passively mode-locked pulsed lasers in the ≈1.0 µm based on the defect-rich samples (≈35% OV and ≈50% Se-doping) exhibit excellent performance. This work deepens the insight of defect functions on optical properties of Bi2O2S nanosheets and provides new avenues for designing advanced photonic devices based on low-dimensional bismuth oxychalcogenides.

2.
Opt Lett ; 49(17): 4795-4798, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207966

RESUMO

Enhancing physical layer encryption in fiber-optic networks remains a challenging yet vital task. In this Letter, we propose a simplified coherent chaotic secure optical communication scheme based on the Kramers-Kronig (KK) receiver. This scheme incorporates a semiconductor laser with a phase-conjugated optical feedback serving as a common chaotic source, and its chaotic output is directly injected into the two slave lasers arranged separately at the transmitter and receiver end to achieve high-quality synchronization of chaotic signals, with a corresponding chaotic bandwidth of 30.6 GHz. By virtue of the common-signal-induced broad chaotic synchronization, a proof-of-principle demonstration is successfully conducted. It involves the secure transmission of a 20 Gbaud 16-level quadrature amplitude modulation (16QAM) signal over a 50 km standard single-mode fiber (SSMF) link. At the receiver end, we deploy a KK receiver to reconstruct the field of the optical signal and hence enable signal compensation and recovery with offline digital signal processing (DSP). This method simplifies device requirements in the current chaotic coherent optical secure communication, offering a cost-effective mode and promising path for advancing physical layer encryption in inter-data center communications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA