RESUMO
INTRODUCTION: Alzheimer's disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS: Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS: A total of 12 single nucleotide polymorphisms (SNPs) demonstrated suggestive association (P ≤ 5 × 10-4) with cognitive preservation. Genetic linkage analyses identified > 100 significant (logarithm of the odds [LOD] ≥ 3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION: A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2. HIGHLIGHTS: GWAS and linkage identified over 100 loci associated with cognitive preservation. One locus on Chromosome 2 retained significance over multiple analyses. Predicted TFBSs near rs1402906 regulate genes associated with neurocognition.
RESUMO
BACKGROUND: Verbal and visuospatial memory impairments are common to Alzheimer disease and Related Dementias (ADRD), but the patterns of decline in these domains may reflect genetic and lifestyle influences. The latter may be pertinent to populations such as the Amish who have unique lifestyle experiences. METHODS: Our data set included 420 Amish and 401 CERAD individuals. Sex-adjusted, age-adjusted, and education-adjusted Z-scores were calculated for the recall portions of the Constructional Praxis Delay (CPD) and Word List Delay (WLD). ANOVAs were then used to examine the main and interaction effects of cohort (Amish, CERAD), cognitive status (case, control), and sex on CPD and WLD Z-scores. RESULTS: The Amish performed better on the CPD than the CERAD cohort. In addition, the difference between cases and controls on the CPD and WLD were smaller in the Amish and Amish female cases performed better on the WLD than the CERAD female cases. DISCUSSION: The Amish performed better on the CPD task, and ADRD-related declines in CPD and WLD were less severe in the Amish. In addition, Amish females with ADRD may have preferential preservation of WLD. This study provides evidence that the Amish exhibit distinct patterns of verbal and visuospatial memory loss associated with aging and ADRD.
Assuntos
Doença de Alzheimer , Humanos , Feminino , Doença de Alzheimer/genética , Amish , Testes Neuropsicológicos , Memória , Rememoração Mental , Transtornos da MemóriaRESUMO
OBJECTIVE: Memory and cognitive problems are central to the diagnosis of Alzheimer's disease (AD). Psychometric approaches to defining phenotypes can aid in identify genetic variants associated with AD. However, these approaches have mostly been limited to affected individuals. Defining phenotypes of both affected and unaffected individuals may help identify genetic variants associated with both AD and healthy aging. This study compares psychometric methods for developing cognitive phenotypes that are more granular than clinical classifications. METHODS: 682 older Old Order Amish individuals were included in the analysis. Adjusted Z-scores of cognitive tests were used to create four models including (1) global threshold scores or (2) memory threshold scores, and (3) global clusters and (4) memory clusters. An ordinal regression examined the coherence of the models with clinical classifications (cognitively impaired [CI], mildly impaired [MI], cognitively unimpaired), APOE-e4, sex, and age. An ANOVA examined the best model phenotypes for differences in clinical classification, APOE-e4, domain Z-scores (memory, language, executive function, and processing speed), sex, and age. RESULTS: The memory cluster identified four phenotypes and had the best fit (χ2 = 491.66). Individuals in the worse performing phenotypes were more likely to be classified as CI or MI and to have APOE-e4. Additionally, all four phenotypes performed significantly differently from one another on the domains of memory, language, and executive functioning. CONCLUSIONS: Memory cluster stratification identified the cognitive phenotypes that best aligned with clinical classifications, APOE-e4, and cognitive performance We predict these phenotypes will prove useful in searching for protective genetic variants.
Assuntos
Doença de Alzheimer , Amish , Humanos , Psicometria , Apolipoproteína E4/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Testes Neuropsicológicos , Cognição , FenótipoRESUMO
BACKGROUND: Alzheimer disease (AD) is more prevalent in African American (AA) and Hispanic White (HIW) compared to Non-Hispanic White (NHW) individuals. Similarly, neuropsychiatric symptoms (NPS) vary by population in AD. This is likely the result of both sociocultural and genetic ancestral differences. However, the impact of these NPS on AD in different groups is not well understood. METHODS: Self-declared AA, HIW, and NHW individuals were ascertained as part of ongoing AD genetics studies. Participants who scored higher than 0.5 on the Clinical Dementia Rating (CDR) Scale (CDR) were included. Group similarities and differences on Neuropsychiatric Inventory Questionnaire (NPI-Q) outcomes (NPI-Q total score, NPI-Q items) were evaluated using univariate ANOVAs and post hoc comparisons after controlling for sex and CDR stage. RESULTS: Our sample consisted of 498 participants (26% AA; 30% HIW; 44% NHW). Overall, NPI-Q total scores differed significantly between our groups, with HIW having the highest NPI-Q total scores, and by AD stage as measured by CDR. We found no significant difference in NPI-Q total score by sex. There were six NPI-Q items with comparable prevalence in all groups and six items that significantly differed between the groups (Anxiety, Apathy, Depression, Disinhibition, Elation, and Irritability). Further, within the HIW group, differences were found between Puerto Rican and Cuban American Hispanics across several NPI-Q items. Finally, Six NPI-Q items were more prevalent in the later stages of AD including Agitation, Appetite, Hallucinations, Irritability, Motor Disturbance, and Nighttime Behavior. CONCLUSIONS: We identified differences in NPS among HIW, AA, and NHW individuals. Most striking was the high burden of NPS in HIW, particularly for mood and anxiety symptoms. We suggest that NPS differences may represent the impact of sociocultural influences on symptom presentation as well as potential genetic factors rooted in ancestral background. Given the complex relationship between AD and NPS it is crucial to discern the presence of NPS to ensure appropriate interventions.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Ansiedade , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Etnicidade , Hispânico ou Latino , Negro ou Afro-Americano , BrancosRESUMO
INTRODUCTION: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI. METHODS: A total of 1522 individuals screened for CI were genotyped. The outcome studied was AAO for CI individuals or age at last normal exam for CU individuals. Cox mixed-effects models examined association between age and single nucleotide variants (SNVs). RESULTS: Three SNVs were significantly associated (P < 5 × 10-8 ) with AAO on chromosomes 6 (rs14538074; hazard ratio [HR] = 3.35), 9 (rs534551495; HR = 2.82), and 17 (rs146729640; HR = 6.38). The chromosome 17 association was replicated in the independent National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease dataset. DISCUSSION: The replicated genome-wide significant association with AAO on chromosome 17 is located in the SHISA6 gene, which is involved in post-synaptic transmission in the hippocampus and is a biologically plausible candidate gene for Alzheimer's disease.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Genótipo , Disfunção Cognitiva/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Age-related macular degeneration (AMD) is a leading cause of blindness in the world. While dozens of independent genomic variants are associated with AMD, about one-third of AMD heritability is still unexplained. To identify novel variants and loci for AMD, we analyzed Illumina HumanExome chip data from 87 Amish individuals with early or late AMD, 79 unaffected Amish individuals, and 15 related Amish individuals with unknown AMD affection status. We retained 37,428 polymorphic autosomal variants across 175 samples for association and linkage analyses. After correcting for multiple testing (n = 37,428), we identified four variants significantly associated with AMD: rs200437673 (LCN9, p = 1.50 × 10-11), rs151214675 (RTEL1, p = 3.18 × 10-8), rs140250387 (DLGAP1, p = 4.49 × 10-7), and rs115333865 (CGRRF1, p = 1.05 × 10-6). These variants have not been previously associated with AMD and are not in linkage disequilibrium with the 52 known AMD-associated variants reported by the International AMD Genomics Consortium based on physical distance. Genome-wide significant linkage peaks were observed on chromosomes 8q21.11-q21.13 (maximum recessive HLOD = 4.03) and 18q21.2-21.32 (maximum dominant HLOD = 3.87; maximum recessive HLOD = 4.27). These loci do not overlap with loci previously linked to AMD. Through gene ontology enrichment analysis with ClueGO in Cytoscape, we determined that several genes in the 1-HLOD support interval of the chromosome 8 locus are involved in fatty acid binding and triglyceride catabolic processes, and the 1-HLOD support interval of the linkage region on chromosome 18 is enriched in genes that participate in serine-type endopeptidase inhibitor activity and the positive regulation of epithelial to mesenchymal transition. These results nominate novel variants and loci for AMD that require further investigation.
Assuntos
Amish/genética , Predisposição Genética para Doença , Variação Genética , Degeneração Macular/genética , Locos de Características Quantitativas , Idoso , Idoso de 80 Anos ou mais , Alelos , Biologia Computacional , Feminino , Frequência do Gene , Ontologia Genética , Estudos de Associação Genética , Ligação Genética , Humanos , Indiana , Masculino , Ohio , LinhagemRESUMO
PURPOSE: To describe spectral domain optical coherence tomography (SD-OCT) findings in an Amish cohort to assess SD-OCT markers for early age-related macular degeneration (AMD). METHODS: The authors performed a family-based prospective cohort study of 1,146 elderly Amish subjects (age range 50-99 years) (2,292 eyes) who had a family history of at least 1 individual with AMD. All subjects underwent complete ophthalmic examinations, SD-OCT using both Cirrus and Spectralis (20 × 20° scan area) instruments, fundus autofluorescence, infrared imaging, and color fundus photography. Spectral domain optical coherence tomography characteristics were analyzed in subjects with AMD (with and without subretinal drusenoid deposits [SDDs]) and normal healthy cohorts. RESULTS: Participants' mean age was 65.2 years (SD ± 11). Color fundus photographic findings in 596 (53%) subjects (1,009 eyes) were consistent with AMD; the remaining 478 (43%) subjects showed no signs of AMD. The choroid was significantly thinner on OCT (242 ± 76 µm, P < 0.001) in those with AMD compared with those without (263 ± 63 µm). Subretinal drusenoid deposits were found in 143 eyes (7%); 11 of the 143 eyes (8%) had no other manifestations of AMD. Drusen volume (P < 0.001) and area of geographic atrophy (P < 0.001) were significantly greater, and choroid was significantly (P < 0.001) thinner in subjects with SDDs versus those without SDDs. CONCLUSION: The authors describe spectral domain optical coherence tomography characteristics in an elderly Amish population with and without AMD, including the frequency of SDD. Although relatively uncommon in this population, the authors confirmed that SDDs can be found in the absence of other features of AMD and that eyes with SDDs have thinner choroids.
Assuntos
Amish/genética , Degeneração Macular/diagnóstico por imagem , Drusas Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Humanos , Degeneração Macular/genética , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estudos Prospectivos , Reprodutibilidade dos Testes , Drusas Retinianas/genéticaRESUMO
PURPOSE: Demographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes. METHODS: A genetic risk score was calculated in a case-control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex. RESULTS: No variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex. Protective effects trending toward significance were detected at two loci identified in single-variant analyses: an intronic variant in FBLN7 (the gene encoding fibulin 7) and at three variants near pyridoxal (pyridoxine, vitamin B6) kinase (PDXK). Aggregate rare-variant analyses suggested evidence for association at ASRGL1, a gene previously linked to photoreceptor cell death, and at BSDC1. In known AMD loci we also identified 29 novel or rare damaging missense or stop/splice variants in our sample of cases and controls. CONCLUSIONS: Identified variants and genes may highlight regions important in the pathogenesis of AMD and are key targets for replication.
Assuntos
Predisposição Genética para Doença/genética , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Idoso , Feminino , Frequência do Gene , Técnicas de Genotipagem , Humanos , Masculino , Fenótipo , Fatores de Risco , Sequenciamento do ExomaRESUMO
PURPOSE: To evaluate the heritability of choroidal thickness and its relationship to age-related macular degeneration (AMD). DESIGN: Cohort study. PARTICIPANTS: Six hundred eighty-nine individuals from Amish families with early or intermediate AMD. METHODS: Ocular coherence tomography was used to quantify choroidal thickness, and fundus photography was used to classify eyes into categories using a modified Clinical Age-Related Maculopathy Staging (CARMS) system. Repeatability and heritability of choroidal thickness and its phenotypic and genetic correlations with the AMD phenotype (CARMS category) were estimated using a generalized linear mixed model (GLMM) approach that accounted for relatedness, repeated measures (left and right eyes), and the effects of age, gender, and refraction. MAIN OUTCOME MEASURES: Heritability of choroidal thickness and its phenotypic and genetic correlation with the AMD phenotype (CARMS category). RESULTS: Phenotypic correlation between choroidal thickness and CARMS category was moderate (Spearman's rank correlation, rs = -0.24; n = 1313 eyes) and significant (GLMM posterior mean, -4.27; 95% credible interval [CI], -7.88 to -0.79; P = 0.02) after controlling for relatedness, age, gender, and refraction. Eyes with advanced AMD had thinner choroids than eyes without AMD (posterior mean, -73.8; 95% CI, -94.7 to -54.6; P < 0.001; n = 1178 eyes). Choroidal thickness was highly repeatable within individuals (repeatability, 0.78; 95% CI, 0.68 to 0.89) and moderately heritable (heritability, 0.40; 95% CI, 0.14 to 0.51), but did not show significant genetic correlation with CARMS category, although the effect size was moderate (genetic correlation, -0.18; 95% CI, -0.49 to 0.16). Choroidal thickness also varied with age, gender, and refraction. The CARMS category showed moderate heritability (heritability, 0.49; 95% CI, 0.26 to 0.72). CONCLUSIONS: We quantify the heritability of choroidal thickness for the first time, highlighting a heritable, quantitative trait that is measurable in all individuals regardless of AMD affection status, and moderately phenotypically correlated with AMD severity. Choroidal thickness therefore may capture variation not captured by the CARMS system. However, because the genetic correlation between choroidal thickness and AMD severity was not significant in our data set, genes associated with the 2 traits may not overlap substantially. Future studies should therefore test for genetic variation associated with choroidal thickness to determine the overlap in genetic basis with AMD.
Assuntos
Amish/genética , Corioide/patologia , Característica Quantitativa Herdável , Adulto , Idoso , Idoso de 80 Anos ou mais , Corioide/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Degeneração Macular/genética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/genética , Tomografia de Coerência ÓpticaRESUMO
Background: Cognitive and functional abilities in individuals with Alzheimer's disease (AD) pathology (ADP) are highly variable. Factors contributing to this variability are not well understood. Previous research indicates that higher educational attainment (EA) correlates with reduced cognitive impairments among those with ADP. While cognitive and functional impairments are correlated, they are distinguishable in their manifestations. Objective: To investigate whether levels of education are associated with functional impairments among those with ADP. Methods: This research involved 410 African American (AA) individuals (Institutional Review Boards 20070307, 01/27/2023) to ascertain whether EA correlates with functional resilience and if this effect varies between APOE É4 carriers and non-carriers. Utilizing EA as a cognitive reserve proxy, CDR-FUNC as a functional difficulties measure, and blood pTau181 as an ADP proxy, the non-parametric Mann-Whitney U test assessed the relationship between EA and CDR-FUNC in individuals with advanced pTau181 levels. Results: The results showed that EA correlated with functional difficulties in AA individuals with high levels of pTau181, such that individuals with high EA are more likely to have better functional ability compared to those with lower EA (Wâ=â730.5, pâ=â0.0007). Additionally, we found that the effect of high EA on functional resilience was stronger in É4 non-carriers compared to É4 carriers (Wâ=â555.5, pâ=â0.022). Conclusion: This study extends the role of cognitive reserve and EA to functional performance showing that cognitive reserve influences the association between ADP burden and functional difficulties. Interestingly, this protective effect seems less pronounced in carriers of the strong genetic risk allele É4.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Disfunção Cognitiva/genética , EscolaridadeRESUMO
Cognitive and functional abilities in individuals with Alzheimer disease (AD) pathology (ADP) show greater than expected variability. While most individuals show substantial impairments in these abilities, a considerable number show little or no impairments. Factors contributing to this variability are not well understood. For instance, multiple studies have shown that higher levels of education are associated with reduced cognitive impairments among those with ADP. However, it remains unclear whether higher levels of education are associated with functional impairments among those with ADP. We studied 410 AA individuals with advanced levels of pTau181 (a biomarker for ADP; individuals as those having log 10 (pTau181) level greater than one standard deviation above the mean) to determine whether EA (categorized as low EA for individuals with ≤ 8 years of education and high EA for those with >8 years) promotes functional resilience and whether this effect varies between APOE ε4 carriers and non-carriers. We used the four non-memory components of the Clinical Dementia Rating (CDR) to create a composite score (CDR-FUNC) to evaluate functional difficulties (scored from 0=no impairment to 12=severe). We employed the non-parametric Mann-Whitney U test to assess the relationship between EA and CDR-FUNC in advanced levels of pTau181 individuals. The results showed that EA promotes resilience to functional problems in AA individuals with advanced levels of pTau181, such that individuals with high EA are more likely to have better functional ability compared to those with lower EA (W=730.5, p=0.0007). Additionally, we found that the effect of high EA on functional resilience was stronger in ε4 non-carriers compared to ε4 carriers (W=555.5, p=0.022). This study extends the role of cognitive reserve and EA to functional performance showing that cognitive reserve influences the association between ADP burden and functional difficulties. Interestingly, this protective effect seems less pronounced in carriers of the strong genetic risk allele ε4. The results highlight the intricate interplay of genetic and non-genetic factors in AD progression, suggesting a need for more personalized strategies to manage functional decline in AD.
RESUMO
INTRODUCTION: Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS: Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS: 12 SNPs demonstrated suggestive association (P≤5×10-4) with cognitive preservation. Genetic linkage analyses identified >100 significant (LOD≥3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION: A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2.
RESUMO
Alzheimer disease (AD) is the most common type of dementia and is estimated to affect 6 million Americans. Risk for AD is multifactorial, including both genetic and environmental risk factors. AD genomic research has generally focused on identification of risk variants. Using this information, polygenic risk scores (PRSs) can be calculated to quantify an individual's relative disease risk due to genetic factors. The Amish are a founder population descended from German and Swiss Anabaptist immigrants. They experienced a genetic bottleneck after arrival in the United States, making their genetic architecture different from the broader European ancestry population. Prior work has demonstrated the lack of transferability of PRSs across populations. Here, we compared the performance of PRSs derived from genome-wide association studies (GWASs) of Amish individuals to those derived from a large European ancestry GWAS. Participants were screened for cognitive impairment with further evaluation for AD. Genotype data were imputed after collection via Illumina genotyping arrays. The Amish individuals were split into two groups based on the primary site of recruitment. For each group, GWAS was conducted with account for relatedness and adjustment for covariates. PRSs were then calculated using weights from the other Amish group. PRS models were evaluated with and without covariates. The Amish-derived PRSs distinguished between dementia status better than the European-derived PRS in our Amish populations and demonstrated performance improvements despite a smaller training sample size. This work highlighted considerations for AD PRS usage in populations that cannot be adequately described by basic race/ethnicity or ancestry classifications.
Assuntos
Doença de Alzheimer , Humanos , Estados Unidos , Doença de Alzheimer/epidemiologia , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Fatores de Risco , AmishRESUMO
To identify novel late-onset Alzheimer disease (LOAD) risk genes, we have analysed Amish populations of Ohio and Indiana. We performed genome-wide SNP linkage and association studies on 798 individuals (109 with LOAD). We tested association using the Modified Quasi-Likelihood Score test and also performed two-point and multipoint linkage analyses. We found that LOAD was significantly associated with APOE (P= 9.0 × 10-6) in all our ascertainment regions except for the Adams County, Indiana, community (P= 0.55). Genome-wide, the most strongly associated SNP was rs12361953 (P= 7.92 × 10-7). A very strong, genome-wide significant multipoint peak [recessive heterogeneity multipoint LOD (HLOD) = 6.14, dominant HLOD = 6.05] was detected on 2p12. Three additional loci with multipoint HLOD scores >3 were detected on 3q26, 9q31 and 18p11. Converging linkage and association results, the most significantly associated SNP under the 2p12 peak was at rs2974151 (P= 1.29 × 10-4). This SNP is located in CTNNA2, which encodes catenin alpha 2, a neuronal-specific catenin known to have function in the developing brain. These results identify CTNNA2 as a novel candidate LOAD gene, and implicate three other regions of the genome as novel LOAD loci. These results underscore the utility of using family-based linkage and association analyses in isolated populations to identify novel loci for traits with complex genetic architecture.
Assuntos
Doença de Alzheimer/genética , Amish/genética , alfa Catenina/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , MasculinoRESUMO
Avoiding disease, maintaining physical and cognitive function, and continued social engagement in long-lived individuals describe successful aging (SA). Mitochondrial lineages described by patterns of common genetic variants ("haplogroups") have been associated with increased longevity in different populations. We investigated the influence of mitochondrial haplogroups on SA in an Amish community sample. Cognitively intact volunteers aged ≥80 years (n = 261) were enrolled in a door-to-door survey of Amish communities in Indiana and Ohio. Individuals scoring in the top third for lower extremity function, needing little assistance with self-care tasks, having no depression symptoms, and expressing high life satisfaction were considered SA (n = 74). The remainder (n = 187) were retained as controls. These individuals descend from 51 matrilines in a single 13-generation pedigree. Mitochondrial haplogroups were assigned using the ten mitochondrial single nucleotide polymorphisms (mtSNPs) defining the nine most common European haplogroups. An additional 17 mtSNPs from a genome-wide association panel were also investigated. Associations between haplogroups, mtSNPs, and SA were determined by logistic regression models accounting for sex, age, body mass index, and matriline via generalized estimating equations. SA cases were more likely to carry Haplogroup X (OR = 7.56, p = 0.0015), and less likely to carry Haplogroup J (OR = 0.40, p = 0.0003). Our results represent a novel association of Haplogroup X with SA and suggest that variants in the mitochondrial genome may promote maintenance of both physical and cognitive function in older adults.
Assuntos
Envelhecimento/genética , Amish , DNA Mitocondrial , Haplótipos , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cognição , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Aptidão Física , AutorrelatoRESUMO
Purpose: Genetic variants in the complement factor H gene (CFH) have been consistently implicated in age-related macular degeneration (AMD) risk. However, their functional effects are not fully characterized. We previously identified a rare, AMD-associated variant in CFH (P503A, rs570523689) in 19 Amish individuals, but its functional consequences were not investigated. Methods: We performed genotyping for CFH P503A in 1326 Amish individuals to identify additional risk allele carriers. We examined differences for age at AMD diagnosis between carriers and noncarriers. In blood samples from risk allele carriers and noncarriers, we quantified (i) CFH RNA expression, (ii) CFH protein expression, and (iii) C-reactive protein (CRP) expression. Potential changes to the CFH protein structure were interrogated computationally with Phyre2 and Chimera software programs. Results: We identified 39 additional carriers from Amish communities in Ohio and Indiana. On average, carriers were younger than noncarriers at AMD diagnosis, but this difference was not significant. CFH transcript and protein levels in blood samples from Amish carriers and noncarriers were also not significantly different. CRP levels were also comparable in plasma samples from carriers and noncarriers. Computational protein modeling showed slight changes in the CFH protein conformation that were predicted to alter interactions between the CFH 503 residue and other neighboring residues. Conclusions: In total, we have identified 58 risk allele carriers for CFH P503A in the Ohio and Indiana Amish. Although we did not detect significant differences in age at AMD diagnosis or expression levels of CFH in blood samples from carriers and noncarriers, we observed modest structural changes to the CFH protein through in silico modeling. Based on our functional and computational observations, we hypothesize that CFH P503A may affect CFH binding or function rather than expression, which would require additional research to confirm.
Assuntos
Fator H do Complemento , Degeneração Macular , Alelos , Amish/genética , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Genótipo , Heterozigoto , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Alzheimer disease (AD) is the most common type of dementia and is currently estimated to affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States, and the proportion of deaths due to AD has been increasing since 2000, while the proportion of many other leading causes of deaths have decreased or remained constant. The risk for AD is multifactorial, including genetic and environmental risk factors. Although APOE ε4 remains the largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. Here, we recruited Amish adults from Ohio and Indiana to investigate AD risk and protective genetic effects. As a founder population that typically practices endogamy, variants that are rare in the general population may be of a higher frequency in the Amish population. Since the Amish have a slightly lower incidence and later age of onset of disease, they represent an excellent and unique population for research on protective genetic variants. We compared AD risk in the Amish and to a non-Amish population through APOE genotype, a non-APOE genetic risk score of genome-wide significant variants, and a non-APOE polygenic risk score considering all of the variants. Our results highlight the lesser relative impact of APOE and differing genetic architecture of AD risk in the Amish compared to a non-Amish, general European ancestry population.
RESUMO
Glaucoma leads to millions of cases of visual impairment and blindness around the world. Its susceptibility is shaped by both environmental and genetic risk factors. Although over 120 risk loci have been identified for glaucoma, a large portion of its heritability is still unexplained. Here we describe the foundation of the Genetics of GLaucoma Evaluation in the AMish (GGLEAM) study to investigate the genetic architecture of glaucoma in the Ohio Amish, which exhibits lower genetic and environmental heterogeneity compared to the general population. To date, we have enrolled 81 Amish individuals in our study from Holmes County, Ohio. As a part of our enrollment process, 62 GGLEAM study participants (42 glaucoma-affected and 20 unaffected individuals) received comprehensive eye examinations and glaucoma evaluations. Using the data from the Anabaptist Genealogy Database, we found that 80 of the GGLEAM study participants were related to one another through a large, multigenerational pedigree containing 1586 people. We plan to integrate the health and kinship data obtained for the GGLEAM study to interrogate glaucoma genetics and pathophysiology in this unique population.
Assuntos
Amish , Glaucoma , Glaucoma/epidemiologia , Glaucoma/genética , Humanos , Ohio/epidemiologia , Linhagem , ProtestantismoRESUMO
BACKGROUND: Lower education has been reported to be associated with dementia. However, many studies have been done in settings where 12 years of formal education is the standard. Formal schooling in the Old Order Amish communities (OOA) ends at 8th grade which, along with their genetic homogeneity, makes it an interesting population to study the effect of education on cognitive impairment. OBJECTIVE: The objective of this study was to examine the association of education with cognitive function in individuals from the OOA. We hypothesized that small differences in educational attainment at lower levels of formal education were associated with risk for cognitive impairment. METHODS: Data of 2,426 individuals from the OOA aged 54-99 were analyzed. The Modified Mini-Mental State Examination (3MS-R) was used to classify participants as CI or normal. Individuals were classified into three education categories: <8, 8, and >8 years of education. To measure the association of education with cognitive status, a logistic regression model was performed adding age and sex as covariates. RESULTS: Our results showed that individuals who attained lowest levels of education (<8 and 8) had a higher probability of becoming cognitvely impaired compared with people attending >8 years (ORâ=â2.96 and 1.85). CONCLUSION: Even within a setting of low levels of formal education, small differences in educational attainment can still be associated with the risk of cognitive impairment. Given the homogeneity of the OOA, these results are less likely to be biased by differences in socioeconomic backgrounds.
Assuntos
Amish/estatística & dados numéricos , Disfunção Cognitiva/epidemiologia , Escolaridade , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-IdadeRESUMO
PURPOSE: Progression rate of age-related macular degeneration (AMD) varies substantially, yet its association with genetic variation has not been widely examined. METHODS: We tested whether progression rate from intermediate AMD to geographic atrophy (GA) or choroidal neovascularization (CNV) was correlated with genotype at seven single nucleotide polymorphisms (SNPs) in the four genes most strongly associated with risk of advanced AMD. Cox proportional hazards survival models examined the association between progression time and SNP genotype while adjusting for age and sex and accounting for variable follow-up time, right censored data, and repeated measures (left and right eyes). RESULTS: Progression rate varied with the number of risk alleles at the CFH:rs10737680 but not the CFH:rs1061170 (Y402H) SNP; individuals with two risk alleles progressed faster than those with one allele (hazard ratio [HR] = 1.61, 95% confidence interval [CI] = 1.08-2.40, P < 0.02, n = 547 eyes), although this was not significant after Bonferroni correction. This signal was likely driven by an association at the correlated protective variant, CFH:rs6677604, which tags the CFHR1-3 deletion; individuals with at least one protective allele progressed more slowly. Considering GA and CNV separately showed that the effect of CFH:rs10737680 was stronger for progression to CNV. CONCLUSIONS: Results support previous findings that AMD progression rate is influenced by CFH, and suggest that variants within CFH may have different effects on risk versus progression. However, since CFH:rs10737680 was not significant after Bonferroni correction and explained only a relatively small portion of variation in progression rate beyond that explained by age, we suggest that additional factors contribute to progression.