Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202312841, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37983729

RESUMO

The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ORR-PCET as a function of pH, electrolyte, and electrode potential remain unresolved, even on the prototypical Pt(111) surface. Herein, we integrate advanced experiments, simulations, and theory to uncover the mechanism of the cation effects on alkaline ORR on well-defined Pt(111). We unveil a dual-cation effect where cations simultaneously determine i) the active electrode surface by controlling the formation of Pt-O and Pt-OH overlayers and ii) the competition between inner- and outer-sphere PCET steps. The cation-dependent transition from Pt-O to Pt-OH determines the ORR mechanism, activity, and selectivity. These findings provide direct evidence that the electrolyte affects the ORR mechanism and performance, with important consequences for the practical design of electrochemical systems and computational catalyst screening studies. Our work highlights the importance of complementary insight from experiments and simulations to understand how different components of the electrochemical interface contribute to electrocatalytic processes.

2.
J Phys Chem A ; 119(36): 9557-67, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26295217

RESUMO

The anharmonic vibrational spectrum of UF6 is computed in full dimensionality directly from ab initio data, i.e., bypassing the construction of a potential energy surface (PES). The vibrational Schrödinger equation is solved by fitting parameters of an adaptable basis using a modified version of the rectangular collocation algorithm of Manzhos and Carrington (J. Chem. Phys . 2013, 139, 051101). The basis functions are products of parametrized Hermite polynomials that impose approximate nodal structure. The Schrödinger equation is solved in normal coordinates. The results show that anharmonicity and coupling do noticeably affect the vibrational transitions, shifting them by several cm(-1). Although UF6 has 15 coordinates, we compute hundreds of levels with fewer than 1000 basis functions and about 50,000 ab initio points. It is the efficiency of the basis that makes it possible to forego a PES.

3.
Adv Mater ; 33(45): e2103812, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541731

RESUMO

The oxygen evolution reaction (OER) limits the energy efficiency of electrocatalytic systems due to the high overpotential symptomatic of poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, a novel synthesis of nanocrystalline Ni-Co-Se using ball milling at cryogenic temperature is reported. It is discovered that, by anodizing the Ni-Co-Se structure during OER, Se ions leach out of the original structure, allowing water molecules to hydrate Ni and Co defective sites, and the nanoparticles to evolve into an active Ni-Co oxyhydroxide. This transformation is observed using operando X-ray absorption spectroscopy, with the findings confirmed using density functional theory calculations. The resulting electrocatalyst exhibits an overpotential of 279 mV at 0.5 A cm-2 and 329 mV at 1 A cm-2 and sustained performance for 500 h. This is achieved using low mass loadings (0.36 mg cm-2 ) of cobalt. Incorporating the electrocatalyst in an anion exchange membrane water electrolyzer yields a current density of 1 A cm-2 at 1.75 V for 95 h without decay in performance. When the electrocatalyst is integrated into a CO2 -to-ethylene electrolyzer, a record-setting full cell voltage of 3 V at current density 1 A cm-2 is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA