Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990458

RESUMO

Nature underpins human well-being in critical ways, especially in health. Nature provides pollination of nutritious crops, purification of drinking water, protection from floods, and climate security, among other well-studied health benefits. A crucial, yet challenging, research frontier is clarifying how nature promotes physical activity for its many mental and physical health benefits, particularly in densely populated cities with scarce and dwindling access to nature. Here we frame this frontier by conceptually developing a spatial decision-support tool that shows where, how, and for whom urban nature promotes physical activity, to inform urban greening efforts and broader health assessments. We synthesize what is known, present a model framework, and detail the model steps and data needs that can yield generalizable spatial models and an effective tool for assessing the urban nature-physical activity relationship. Current knowledge supports an initial model that can distinguish broad trends and enrich urban planning, spatial policy, and public health decisions. New, iterative research and application will reveal the importance of different types of urban nature, the different subpopulations who will benefit from it, and nature's potential contribution to creating more equitable, green, livable cities with active inhabitants.


Assuntos
Planejamento de Cidades , Ecossistema , Exercício Físico , Modelos Teóricos , Saúde Pública , Humanos
2.
Proc Natl Acad Sci U S A ; 113(26): 7195-200, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298349

RESUMO

The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Migração Animal , Animais , Clima , Geografia , Estados Unidos
3.
Conserv Biol ; 32(6): 1414-1425, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29744936

RESUMO

As evidenced by past climatic refugia, locations projected to harbor remnants of present-day climates may serve as critical refugia for current biodiversity in the face of modern climate change. We mapped potential climatic refugia in the future across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically derived thresholds to define analogs and tested the impacts of dispersal limitation with 4 distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate-projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤40°N) and slightly lower elevations (approximately 2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected-area network would be sufficient to protect the refugia present under all 3 climate projections we explored. We believe these refugia are high conservation priorities due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long term. These refugia contracted substantially between the 2050s and the 2080s, which supports the idea that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity.


Assuntos
Conservação dos Recursos Naturais , Refúgio de Vida Selvagem , Biodiversidade , Mudança Climática , América do Norte
4.
Conserv Biol ; 32(3): 648-659, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193292

RESUMO

For species at risk of decline or extinction in source-sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site- or habitat-specific demographic conditions, movement abilities, and behaviors. We calculated source-sink metrics over a range of periods of data collection and prioritized consistently high-output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source-sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data-rich source-sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short-term regional persistence. Because source-sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Demografia , Espécies em Perigo de Extinção , Dinâmica Populacional
5.
Glob Chang Biol ; 23(5): 2005-2015, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27859937

RESUMO

Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate-driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species-specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate-driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over-predict suitable environmental space under future climatic conditions.


Assuntos
Mudança Climática , Ecossistema , Florestas , Clima , Modelos Biológicos , América do Norte , Árvores
6.
Glob Chang Biol ; 23(11): 4508-4520, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28267245

RESUMO

As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Refúgio de Vida Selvagem , Conservação dos Recursos Naturais/métodos , Ecologia , Previsões , América do Norte
7.
Conserv Biol ; 31(6): 1397-1408, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28339121

RESUMO

Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.


Assuntos
Distribuição Animal , Mudança Climática , Conservação dos Recursos Naturais/métodos , Dispersão Vegetal , Animais , Canadá , Clima , Mapeamento Geográfico , Modelos Biológicos , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 111(20): 7492-7, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799685

RESUMO

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura/métodos , Anfíbios , Animais , Biodiversidade , Aves , Carbono/química , Conservação dos Recursos Naturais/economia , Abastecimento de Alimentos , Geografia , Modelos Econométricos , Política Pública , Árvores , Estados Unidos
10.
Conserv Biol ; 29(6): 1674-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032147

RESUMO

Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source-sink dynamics for 3 very different endangered species: Black-capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual-based models. We then used the models to quantify population abundance and persistence with and without long-term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black-capped Vireos) when Brown-headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black-capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context-dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re-assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.


Assuntos
Conservação dos Recursos Naturais , Dipodomys/fisiologia , Ecossistema , Espécies em Perigo de Extinção , Aves Canoras/fisiologia , Estrigiformes/fisiologia , Alberta , Animais , Feminino , Masculino , Modelos Biológicos , Noroeste dos Estados Unidos , Dinâmica Populacional , Texas
11.
Conserv Biol ; 29(3): 618-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25922899

RESUMO

Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible to conserve an abiotically diverse "stage" upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time-albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Fenômenos Geológicos , Ecologia/tendências
12.
Proc Natl Acad Sci U S A ; 109(22): 8606-11, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586104

RESUMO

As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.


Assuntos
Mudança Climática , Ecossistema , Mamíferos/crescimento & desenvolvimento , Modelos Biológicos , Algoritmos , Animais , Clima , Geografia , Humanos , Mamíferos/classificação , América do Norte , Dinâmica Populacional , América do Sul , Especificidade da Espécie
13.
Ecol Appl ; 24(4): 895-912, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988784

RESUMO

Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of chinook salmon from the more altered stream and could also restrict bass from occupying the upper 31 km of salmon-rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by nonnative species.


Assuntos
Bass/fisiologia , Mudança Climática , Comportamento Predatório , Rios , Salmão/fisiologia , Adaptação Fisiológica , Animais , Espécies Introduzidas , Modelos Biológicos , Oregon
14.
Ecol Appl ; 24(1): 25-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24640532

RESUMO

As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species--a vine, a marine mussel, and a freshwater crayfish--under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions.


Assuntos
Espécies Introduzidas , Modelos Biológicos , Modelos Estatísticos , Animais , Astacoidea/fisiologia , Celastrus/fisiologia , Demografia , Mytilus/fisiologia , Estados Unidos
15.
Conserv Biol ; 28(2): 561-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24299126

RESUMO

Conservation-reliant species depend on active management, even after surpassing recovery goals, for protection from persistent threats. Required management may include control of another species, habitat maintenance, or artificial recruitment. Sometimes, it can be difficult to determine whether sustained management is required. We used nonspatial stochastic population projection matrix simulation and a spatially explicit population model to estimate the effects of parasitism by a brood parasite, the Brown-headed Cowbird (Moluthrus ater), on a population of endangered Black-capped Vireos (Vireo atricapilla). We simulated parasitism as a percentage of breeding vireo pairs experiencing decreased fecundity due to cowbirds. We estimated maximum sustainable parasitism (i.e., highest percentage of parasitized vireo breeding pairs for which population growth is ≥1) with the nonspatial model under multiple scenarios designed to assess sensitivity to assumptions about population growth rate, demographic effects of parasitism, and spatial distribution of parasitism. We then used the spatially explicit model to estimate cumulative probabilities of the population falling below the population recovery target of 1000 breeding pairs for a range of parasitism rates under multiple scenarios. We constructed our models from data on vireos collected on the Fort Hood Military Reservation, Texas (U.S.A.). Estimates of maximum sustainable parasitism rates ranged from 9-12% in scenarios with a low (6%) vireo population growth rate to 49-60% in scenarios with a high (24%) growth rate. Sustained parasitism above 45-85%, depending on the scenario, would likely result in the Fort Hood Vireo population dropping below its recovery goal within the next 25 years. These estimates suggest that vireos, although tolerant of low parasitism rates, are a conservation-reliant species dependent on cowbird management.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Aves Canoras/fisiologia , Aves Canoras/parasitologia , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Crescimento Demográfico , Texas
16.
Conserv Biol ; 27(2): 407-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410037

RESUMO

As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Distribuição Animal , Animais , Colúmbia Britânica , Modelos Biológicos , Noroeste dos Estados Unidos , Dispersão Vegetal
17.
Ecol Lett ; 15(11): 1249-1256, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22913646

RESUMO

Efficient conservation planning requires knowledge about conservation targets, threats to those targets, costs of conservation and the marginal return to additional conservation efforts. Systematic conservation planning typically only takes a small piece of this complex puzzle into account. Here, we use a return-on-investment (ROI) approach to prioritise lands for conservation at the county level in the conterminous USA. Our approach accounts for species richness, county area, the proportion of species' ranges already protected, the threat of land conversion and land costs. Areas selected by a complementarity-based greedy heuristic using our full ROI approach provided greater averted species losses per dollar spent compared with areas selected by heuristics accounting for richness alone or richness and cost, and avoided acquiring lands not threatened with conversion. In contrast to traditional prioritisation approaches, our results highlight conservation bargains, opportunities to avert the threat of development and places where conservation efforts are currently lacking.


Assuntos
Conservação dos Recursos Naturais/economia , Modelos Teóricos , Biodiversidade , Análise Custo-Benefício , Estados Unidos
18.
Conserv Biol ; 26(5): 873-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22827880

RESUMO

Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species-juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)-in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69-95%, 51-87%, and 86-100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Oncorhynchus/fisiologia , Truta/fisiologia , Migração Animal , Animais , Previsões , Temperatura Alta , Modelos Teóricos , Oregon , Reprodução , Rios , Estações do Ano , Análise Espacial , Especificidade da Espécie
19.
Environ Manage ; 50(3): 341-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773068

RESUMO

As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)--water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Previsões , Objetivos , Rios , Estados Unidos , Abastecimento de Água
20.
Conserv Biol ; 25(1): 40-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20666802

RESUMO

The rapidity of climate change is predicted to exceed the ability of many species to adapt or to disperse to more climatically favorable surroundings. Conservation of these species may require managed relocation (also called assisted migration or assisted colonization) of individuals to locations where the probability of their future persistence may be higher. The history of non-native species throughout the world suggests managed relocation may not be applicable universally. Given the constrained existence of freshwater organisms within highly dendritic networks containing isolated ponds, lakes, and rivers, managed relocation may represent a useful conservation strategy. Yet, these same distinctive properties of freshwater ecosystems may increase the probability of unintended ecological consequences. We explored whether managed relocation is an ecologically sound conservation strategy for freshwater systems and provided guidelines for identifying candidates and localities for managed relocation. A comparison of ecological and life-history traits of freshwater animals associated with high probabilities of extirpation and invasion suggests that it is possible to select species for managed relocation to minimize the likelihood of unintended effects to recipient ecosystems. We recommend that translocations occur within the species' historical range and optimally within the same major river basin and that lacustrine and riverine species be translocated to physically isolated seepage lakes and upstream of natural or artificial barriers, respectively, to lower the risk of secondary spread across the landscape. We provide five core recommendations to enhance the scientific basis of guidelines for managed relocation in freshwater environments: adopt the term managed translocation to reflect the fact that individuals will not always be reintroduced within their historical native range; examine the trade-off between facilitation of individual movement and the probability of range expansion of non-native species; determine which species and locations might be immediately considered for managed translocation; adopt a hypothetico-deductive framework by conducting experimental trials to introduce species of conservation concern into new areas within their historical range; build on previous research associated with species reintroductions through communication and synthesis of case studies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Extinção Biológica , Água Doce , Adaptação Fisiológica , Anfíbios/fisiologia , Migração Animal , Animais , Mudança Climática , Peixes/fisiologia , Répteis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA