Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Exp Parasitol ; 263-264: 108807, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043327

RESUMO

African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 µg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 µg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 µg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 µg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39090985

RESUMO

Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product carbon length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range.

3.
J Fish Biol ; 100(3): 783-792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35049041

RESUMO

This study investigated the measurements of energy density and bioenergetic modelling for a pelagic ray, Mobula eregoodoo, to estimate its relative allocation to various bodily processes and especially reproduction. The data revealed M. eregoodoo uses up to 21.0% and 2.5% of its annual energy budget on growth and reproduction, respectively. During pregnancy, females depleted energy reserves in the liver, which, along with their biennial reproductive cycle, aligns with general theory that ectotherms are capital breeders and thus build energy reserves before reproduction. Nonetheless, the reduction in energy reserves did not account for all reproductive costs, and therefore, gravid females supplement reproductive costs through energy derived from the diet, according to an income-breeding strategy. These characteristics imply that M. eregoodoo exhibits some flexibility in fuelling reproduction depending on energy availability throughout the reproductive cycle, which may be prevalent in other elasmobranchs. The data represent the first estimates of both the metabolic costs of gestation in elasmobranchs and the relative cost of reproduction in rays. Energy costs and plasticity associated with highly variable reproductive strategies in elasmobranchs may influence long-term population viability under a rapidly changing environment.


Assuntos
Elasmobrânquios , Reprodução , Animais , Dieta/veterinária , Metabolismo Energético , Feminino
4.
Metab Eng ; 63: 34-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221420

RESUMO

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.


Assuntos
Aprendizado de Máquina , Engenharia Metabólica , Algoritmos , Edição de Genes
5.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917792

RESUMO

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.

6.
J Transl Med ; 18(1): 256, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580725

RESUMO

BACKGROUND: This is an exploratory study using a novel imaging modality, quantitative ultrashort time-to-echo, contrast enhanced (QUTE-CE) magnetic resonance imaging to evaluate the permeability of the blood-brain barrier in a rat model of type 2 diabetes with the presumption that small vessel disease is a contributing factor to neuropathology in diabetes. METHODS: The BBZDR/Wor rat, a model of type 2 diabetes, and age-matched controls were studied for changes in blood-brain barrier permeability. QUTE-CE, a quantitative vascular biomarker, generated angiographic images with over 500,000 voxels that were registered to a 3D MRI rat brain atlas providing site-specific information on blood-brain barrier permeability in 173 different brain areas. RESULTS: In this model of diabetes, without the support of insulin treatment, there was global capillary pathology with over 84% of the brain showing a significant increase in blood-brain barrier permeability over wild-type controls. Areas of the cerebellum and midbrain dopaminergic system were not significantly affected. CONCLUSION: Small vessel disease as assessed by permeability in the blood-brain barrier in type 2 diabetes is pervasive and includes much of the brain. The increase in blood-brain barrier permeability is a likely contributing factor to diabetic encephalopathy and dementia.


Assuntos
Barreira Hematoencefálica , Diabetes Mellitus Tipo 2 , Animais , Encéfalo/diagnóstico por imagem , Permeabilidade Capilar , Imageamento por Ressonância Magnética , Permeabilidade , Ratos
7.
Environ Sci Technol ; 51(8): 4317-4327, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28306234

RESUMO

Anaerobic ammonia oxidation (anammox) combined with partial nitritation (PN) is an innovative treatment process for energy-efficient nitrogen removal from wastewater. In this study, we used genome-based metagenomics to investigate the overall community structure and anammox species enriched in suspended growth (SGR) and attached growth packed-bed (AGR) anammox reactors after 220 days of operation. Both reactors removed more than 85% of the total inorganic nitrogen. Metagenomic binning and phylogenetic analysis revealed that two anammox population genomes, affiliated with the genus Candidatus Brocadia, were differentially abundant between the SGR and AGR. Both of the genomes shared an average nucleotide identify of 83%, suggesting the presence of two different species enriched in both of the reactors. Metabolic reconstruction of both population genomes revealed key aspects of their metabolism in comparison to known anammox species. The community composition of both the reactors was also investigated to identify the presence of flanking community members. Metagenomics and 16S rRNA gene amplicon sequencing revealed the dominant flanking community members in both reactors were affiliated with the phyla Anaerolinea, Ignavibacteria, and Proteobacteria. Findings from this research adds two new species, Ca. Brocadia sp. 1 and Ca. Brocadia sp. 2, to the genus Ca. Brocadia and sheds light on their metabolism in engineered ecosystems.


Assuntos
Metagenômica , RNA Ribossômico 16S/genética , Bactérias , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxirredução , Filogenia
8.
Environ Microbiol ; 17(12): 4979-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25857222

RESUMO

Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems.


Assuntos
Bactérias/classificação , DNA Ribossômico/genética , Fósforo/metabolismo , RNA Ribossômico/genética , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Ecossistema , Filogenia , Águas Residuárias
9.
Appl Environ Microbiol ; 81(22): 7924-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341214

RESUMO

Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevailing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and microbial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of endemism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to discrete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions. To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin related to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. population genome and related organisms isolated from different environments reflected habitat-specific selection pressures that included nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive wells or for those with declining productivity.


Assuntos
Archaea/genética , Bactérias/genética , Carvão Mineral/microbiologia , Genoma Arqueal , Genoma Bacteriano , Metagenoma , Alberta , DNA Bacteriano/genética , Ecossistema , Metagenômica , Mineração , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Chemistry ; 21(10): 4039-48, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25641628

RESUMO

Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putative quadracyclic adenine analogues. The compounds were efficiently synthesized from a common intermediate through a two-step pathway with the Suzuki-Miyaura coupling as the key step. Two of the compounds, qAN1 and qAN4, display brightnesses (εΦF) of 1700 and 2300, respectively, in water and behave as wavelength-ratiometric pH probes under acidic conditions. The other two, qAN2 and qAN3, display lower brightnesses but exhibit polarity-sensitive dual-band emissions that could prove useful to investigate DNA structural changes induced by DNA-protein or -drug interactions. The four qANs are very promising microenvironment-sensitive fluorescent adenine analogues that display considerable brightness for such compounds.


Assuntos
Adenina/química , Corantes/química , Corantes Fluorescentes/química , Ácidos Nucleicos/química , Pareamento de Bases , Fluorescência , Espectrometria de Fluorescência
11.
Org Biomol Chem ; 12(28): 5158-67, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24912077

RESUMO

Fluorescent nucleic acid base analogues are powerful probes of DNA structure. Here we describe the synthesis and photo-physical characterisation of a series of 2-(4-amino-5-(1H-1,2,3-triazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl) and 2-(4-amino-3-(1H-1,2,3-triazol-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl) analogues via Sonogashira cross-coupling and [3 + 2]-cycloaddition reactions as the key steps in the synthesis. Compounds with a nitrogen atom in position 8 showed an approximately ten-fold increase in quantum yield and decreased Stokes shift compared to analogues with a carbon atom in position 8. Furthermore, the analogues containing nitrogen in the 8-position showed a more red-shifted and structured absorption as opposed to those which have a carbon incorporated in the same position. Compared to the previously characterised C8-triazole modified adenine, the emissive potential was significantly lower (tenfold or more) for this new family of triazoles-adenine compounds. However, three of the compounds have photophysical properties which will make them interesting to monitor inside DNA.


Assuntos
Adenina/síntese química , Corantes Fluorescentes/síntese química , Triazóis/síntese química , Adenina/análogos & derivados , DNA/análise , DNA/química , Corantes Fluorescentes/química , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência , Triazóis/química
12.
RSC Adv ; 14(32): 22962-22973, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39086992

RESUMO

This study compares carbon dioxide conversion in carbonate-fed microbial electrosynthesis (MES) cells operated at low (5.3), neutral (7) and high (8) pH levels and inoculated either with wild-type or bioaugmented mixed microbial populations. Two 100 mL (cathode volume) MES cells inoculated with anaerobic digester sludge were operated with a continuous supply of carbonate solution (5 g L-1 as CO3 2-). Acetate production was highest at low pH, however CH4 production still persisted, possibly due to pH gradients within the cathodic biofilm, resulting in acetate and CH4 volumetric (per cathode compartment volume) production rates of 1.0 ± 0.1 g (Lc d)-1 and 0.84 ± 0.05 L (Lc d)-1, respectively. To enhance production of carboxylic acids, four strains of acetogenic bacteria (Clostridium carboxidivorans, Clostridium ljungdahlii, Clostridium autoethanogenum, and Eubacterium limosum) were added to both MES cells. In the bioaugmented MES cells, acetate production increased to 2.0 g (Lc d)-1. However, production of other carboxylic acids such as butyrate and caproate was insignificant. Furthermore, 16S rRNA gene sequencing of cathodic biofilm and suspended biomass suggested a low density of introduced acetogenic bacteria implying that selective pressure rather than bioaugmentation led to improved acetate production.

13.
Curr Opin Biotechnol ; 88: 103165, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033648

RESUMO

Emerging biotechnologies that solve pressing environmental and climate emergencies will require harnessing the vast functional diversity of the underlying microbiomes driving such engineered processes. Modeling is a critical aspect of process engineering that informs system design as well as aids diagnostic optimization of performance. 'Conventional' bioprocess models assume homogenous biomass within functional guilds and thus fail to predict emergent properties of diverse microbial physiologies, such as product specificity and community interactions. Yet, recent advances in functional 'omics-based approaches can provide a 'lens' through which we can probe and measure in situ ecophysiologies of environmental microbiomes. Here, we overview microbial community modeling approaches that incorporate functional 'omics data, which we posit can advance our ability to design and control new environmental biotechnologies going forward.

14.
Cell Signal ; 107: 110684, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080443

RESUMO

In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1ß2 (LTα1ß2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1ß (IL-1ß) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1ß and LTα1ß2. In contrast, knockdown of IKKß using siRNA or pharmacological inhibition of IKKß activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1ß induced phosphorylation of p100 however, the response to LTα1ß2 was virtually abolished. Surprisingly IL-1ß also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1ß2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1ß.


Assuntos
Quinase I-kappa B , Interleucina-1beta , NF-kappa B , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
15.
Cell Rep ; 42(11): 113374, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938973

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of ß-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
16.
Inorg Chem ; 51(4): 2016-30, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22320257

RESUMO

A series of bithiophene derivatives that are either symmetrically disubstituted with two Ph(2)(X)P groups (X = O, S, Se) or monosubstituted with one Ph(2)(X)P group (X = O, S, Se) and an organic functional group (H, CHO, CH(2)OH, CO(2)Me) have been synthesized. The X-ray crystal structures of Ph(2)(Se)P(C(4)H(2)S)(2)P(Se)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(S)P(C(4)H(2)S)(2)H, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH exhibit very different solid-state structures depending on the type of intermolecular π-π interactions that occur. The compounds have been characterized by electronic absorption and fluorescence studies. Of particular interest is that the quantum yields of Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(O)P(C(4)H(2)S)(2)P(O)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)CO(2)Me, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH are significantly larger than that of bithiophene (factors of 13, 14, 14, and 22, respectively). This behavior is quite different from that of analogously substituted terthiophenes in which substitution results in only modest increases in the quantum yields over that of terthiophene (factors of 0.94, 2.7, 1.3, and 1.5, respectively). DFT studies of the emission process suggest that modifying the Ph(2)(X)P group affects both the fluorescence and nonradiative rate constants while modifications of the organic substituents primarily affect the nonradiative rate constants. The higher quantum yields of the substituted bithiophenes make them promising for application in organic light-emitting devices (OLED). The optical power limiting (OPL) performances of these Ph(2)(X)P-substituted bithiophenes were evaluated by nonlinear transmission measurements in the violet-blue spectral region (430-480 nm) with picosecond laser pulses. The OPL performances are enhanced by heavier X groups and when by higher solubilities. Saturated chloroform solutions of Ph(2)(O)P(C(4)H(2)S)(2)H and Ph(2)(S)P(C(4)H(2)S)(2)H exhibit significantly stronger nonlinear absorption than any previously reported compounds and are promising candidates for use in broadband optical power limiters.

17.
mBio ; 13(1): e0355921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012349

RESUMO

Mycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host's macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of M. tuberculosis and its involvement in the acquisition of drug tolerance. We conducted metabolomics profiling using a phosphoenolpyruvate carboxykinase (PEPCK)-deficient M. tuberculosis strain in an acetate-induced dormancy-like state, highlighting an overaccumulation of methylcitrate cycle (MCC) intermediates that correlates with enhanced drug tolerance against isoniazid and bedaquiline. Further metabolomics analyses of two M. tuberculosis mutants, an ICL knockdown (KD) strain and PrpD knockout (KO) strain, each lacking an MCC enzyme-isocitrate lyase (ICL) and 2-methylcitrate dehydratase (PrpD), respectively-were conducted after treatment with antibiotics. The ICL KD strain, which lacks the last enzyme of the MCC, showed an overaccumulation of MCC intermediates and a high level of drug tolerance. The PrpD KO strain, however, failed to accumulate MCC intermediates as it lacks the second step of the MCC and showed only a minor level of drug tolerance compared to the ICL KD mutant and its parental strain (CDC1551). Notably, addition of authentic 2-methylisocitrate, an MCC intermediate, improved the M. tuberculosis drug tolerance against antibiotics even in glycerol medium. Furthermore, wild-type M. tuberculosis displayed levels of drug tolerance when cultured in acetate medium significantly greater than those in glycerol medium. Taken together, the fatty acid-induced dormancy-like state remodels the central carbon metabolism of M. tuberculosis that is functionally relevant to acquisition of M. tuberculosis drug tolerance. IMPORTANCE Understanding the mechanisms underlying M. tuberculosis adaptive strategies to achieve drug tolerance is crucial for the identification of new targets and the development of new drugs. Here, we show that acetate medium triggers a drug-tolerant state in M. tuberculosis when challenged with antituberculosis (anti-TB) drugs. This carbon-induced drug-tolerant state is linked to an accumulation of the methylcitrate cycle (MCC) intermediates, whose role was previously known as a detox pathway for propionate metabolism. Three mutant strains with mutations in gluconeogenesis and MCC were used to investigate the correlation between drug tolerance and the accumulation of MCC metabolites. We herein report a new role of the MCC used to provide a survival advantage to M. tuberculosis as a species against both anti-TB drugs upon specific carbon sources.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Glicerol/metabolismo , Carbono/metabolismo , Ácidos Tricarboxílicos/metabolismo , Tuberculose/microbiologia , Ácidos Graxos/metabolismo , Acetatos/metabolismo
18.
Microb Cell ; 9(5): 123-125, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35647177

RESUMO

Unlike other heterotrophic bacteria, Mycobacterium tuberculosis (Mtb) can co-catabolize a range of carbon sources simultaneously. Evolution of Mtb within host nutrient environment allows Mtb to consume the host's fatty acids as a main carbon source during infection. The fatty acid-induced metabolic advantage greatly contributes to Mtb's pathogenicity and virulence. Thus, the identification of key enzymes involved in Mtb's fatty acid metabolism is urgently needed to aid new drug development. Two fatty acid metabolism enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and isocitrate lyase (ICL) have been intensively studied as promising drug targets, but recently, Quinonez et al. (mBio, doi: 10.1128/mbio.03559-21) highlighted a link between the fatty acid-induced dormancy-like state and drug tolerance. Using metabolomics profiling of a PEPCK-deficient mutant, Quinonez et al. identified that over-accumulation of methylcitrate cycle (MCC) intermediates are phenotypically associated with enhanced drug tolerance against first- and second- line TB antibiotics. This finding was further corroborated by metabolomics and phenotypic characterization of Mtb mutants lacking either ICL or 2-methylcitrate dehydratase. Fatty acid metabolism induced drug-tolerance was also recapitulated in wildtype Mtb after treatment with authentic 2-methylisocitrate, an MCC intermediate. Together, the fatty acid-induced dormancy-like state and drug tolerance are attributed to dysregulated MCC activity.

19.
ISME J ; 16(2): 346-357, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341504

RESUMO

The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/metabolismo , Glicosilação , Oxirredução
20.
Inorg Chem ; 50(5): 2015-27, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21361383

RESUMO

Earlier studies of phosphine-substituted terthiophenes have demonstrated that some of these materials exhibit nonlinear absorption at 532 nm. However, this wavelength is significantly removed from the linear absorption maxima of the complexes, suggesting that better nonlinear absorption might be observed at wavelengths closer to the linear absorption maxima. To investigate this possibility, a library of compounds has been prepared either by varying the group attached to the nonbonding pair of electrons on the phosphorus atoms of 5,5''-bis(diphenylphosphino)-2,2':5',2''-terthiophene (PT(3)P), or by introducing additional substituents on the 5''-position of 5-(diphenylphosphino)-2,2':5',2''-terthiophene (PT(3)). All these compounds have been characterized using multinuclear NMR, UV-vis, and fluorescence spectroscopy. The compounds are strongly fluorescent, and both the fluorescence wavelength and the intensity depend upon the thiophene substituents. The nonlinear optical properties have also been evaluated at various wavelengths in the blue region. Each compound exhibits reverse saturable absorption, and the intensity of the reverse saturable absorption at a particular wavelength depends on the chemical structure of the compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA