Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Chem ; 44(13): 1263-1277, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866644

RESUMO

Solvent-mediated interactions contribute to ligand binding affinities in computational drug design and provide a challenge for theoretical predictions. In this study, we analyze the solvation free energy of benzene derivatives in water to guide the development of predictive models for solvation free energies and solvent-mediated interactions. We use a spatially resolved analysis of local solvation free energy contributions and define solvation free energy arithmetic, which enable us to construct additive models to describe the solvation of complex compounds. The substituents analyzed in this study are carboxyl and nitro-groups due to their similar sterical requirements but distinct interactions with water. We find that nonadditive solvation free energy contributions are primarily attributed to electrostatics, which are qualitatively reproduced with computationally efficient continuum models. This suggests a promising route for the development of efficient and accurate models for the solvation of complex molecules with varying substitution patterns using solvation arithmetic.

2.
Electrophoresis ; 42(20): 2060-2069, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302698

RESUMO

DEP is an established method to manipulate micrometer-sized particles, but standard continuum theories predict only negligible effects for nanometer-sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein-water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization-induced changes in the protein solvation free energy, which result in a solvent-mediated contribution to dielectrophoretic forces. We quantify solvent-mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein-water dipole-dipole interactions. The magnitude of solvent-mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent-mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein-water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.


Assuntos
Eletroforese , Proteínas , Eletricidade , Simulação de Dinâmica Molecular , Solventes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA