Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959927

RESUMO

In order to overcome the defects of fast-growing poplar wood, such as low strength and poor toughness, this paper introduces a method of modifying poplar wood via impregnation with silica sol/melamine-glyoxal (silica sol/MG) resin and explores its effects on the physical, mechanical, and thermal properties of poplar wood. It was found via scanning electron microscopy that the composite modifier covered and filled the cell lumen, cell interstitial space, and cell wall pores of poplar wood. Further, infrared spectroscopy and X-ray photoelectron spectroscopy analyses confirmed that chemical cross-linking occurred between the silica sol/MG resin composite modifier and the internal groups of poplar wood and that the Si-O-Si flexible long chains introduced in the composite modifier formed a cross-linking network with poplar wood such as Si-O-Si and Si-O-C, which led to the improvement of the physical and mechanical properties and the enhancement of the thermal stability of poplar wood. The method provides a theoretical basis for the high-value utilization of fast-growing poplar wood.

2.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958897

RESUMO

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Células Germinativas/metabolismo , Sus scrofa/genética , Sus scrofa/virologia , Transplante Heterólogo , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Sus scrofa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA