Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Atheroscler Rep ; 26(9): 463-483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38958925

RESUMO

PURPOSE OF REVIEW: Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS: Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Cardiovasculares , Transtorno Depressivo Maior , Guanilato Quinases , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Polimorfismo de Nucleotídeo Único
2.
Front Cardiovasc Med ; 10: 1213428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264262

RESUMO

Background: Traf2 and Nck-interacting kinase (TNIK) is known for its regulatory role in various processes within cancer cells. However, its role within endothelial cells (ECs) has remained relatively unexplored. Methods: Leveraging RNA-seq data and Ingenuity Pathway Analysis (IPA), we probed the potential impact of TNIK depletion on ECs. Results: Examination of RNA-seq data uncovered more than 450 Differentially Expressed Genes (DEGs) in TNIK-depleted ECs, displaying a fold change exceeding 2 with a false discovery rate (FDR) below 0.05. IPA analysis unveiled that TNIK depletion leads to the inhibition of the interferon (IFN) pathway [-log (p-value) >11], downregulation of IFN-related genes, and inhibition of Hypercytokinemia/Hyperchemokinemia [-log (p-value) >8]. The validation process encompassed qRT-PCR to evaluate mRNA expression of crucial IFN-related genes, immunoblotting to gauge STAT1 and STAT2 protein levels, and ELISA for the quantification of IFN and cytokine secretion in siTNIK-depleted ECs. These assessments consistently revealed substantial reductions upon TNIK depletion. When transducing HUVECs with replication incompetent E1-E4 deleted adenovirus expressing green fluorescent protein (Ad-GFP), it was demonstrated that TNIK depletion did not affect the uptake of Ad-GFP. Nonetheless, TNIK depletion induced cytopathic effects (CPE) in ECs transduced with wild-type human adenovirus serotype 5 (Ad-WT). Summary: Our findings suggest that TNIK plays a crucial role in regulating the EC response to virus infections through modulation of the IFN pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA